Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Matematyka

Matematyka poznać. zrozumieć 1.Zakres podstawowy (Zbiór zadań, WSiP)

Wykres funkcji f(x) przesunięto równolegle... 4.57 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 1 Klasa
  3. Matematyka

Wykres funkcji f(x) przesunięto równolegle...

6
 Zadanie
7
 Zadanie
8
 Zadanie

9
 Zadanie

Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium.

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
Informacje
Autorzy: Aleksandra Ciszkowska, Alina Przychoda, Zygmunt Łaszczyk
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Wykres funkcji

Przejdźmy zatem do tego co nas zapewne czeka na sprawdzianach i na maturze. Sprawdzenie czy wykres jest funkcją.

Wykres jest funkcją kiedy dowolną pionową linię układu współrzędnych wykres przetnie tylko raz. Jak to najłatwiej zobaczyć? Za pomocą linijki!

Mamy taki oto wykres:

wyk1

Załóżmy, że gruby niebieski pasek będzie moją linijką. Zaczynamy od lewej skrajnej części układu:

wyk2

A następnie przesuwamy w prawą stronę patrząc czy nasz pasek jest gdzieś przecinany więcej niż raz równocześnie.

Pokażę tu kilka faz:

wyk3

Przecina tylko raz

wyk4

Tu też

wyk5

Koniec sprawdzania, wykres jest funkcją.

Weźmy inny wykres:

wyk11

Przesuńmy naszą „linijkę”:

wyk12 
Nadal przecina raz

wyk13

Jednak tutaj już dwa razy, nie jest to funkcja.
 
Funkcja ciągła
Funkcja ciągła to intuicyjnie taka funkcja, którą można narysować bez odrywania ołówka od kartki - nie ma żadnych nagłych "przeskoków". Jednak ta definicja, poza tym, że jest mało precyzyjna, zawiera błąd. Na przykład funkcję $$f(x) = frac{1}{x}$$ nazywamy funkcją ciągłą, mimo, że przecież nie da się narysować jej wykresu od $$-1$$ do $$1$$ bez odrywania ołówka. Dzieje się tak, ponieważ funkcja może być ciągła tylko w swojej dziedzinie - poza dziedziną przecież "nie istnieje", więcn nie można nic o niej powiedzieć.

Precyzyjną definicją ciągłości jest to, czy dla każdego $$x f(x)$$ jest równe granicy w tym punkcie. Intuicyjnie wydaje się to poprawne: jeśli coraz bardziej zbliżamy się do punktu $$x_0$$ i jesteśmy coraz bliżej jego wartości, to jeśli w końcu dotrzemy w $$x_0$$, to powinniśmy tam znaleźć wartość właśnie $$f(x_0)$$.

Funkcje ciągłe mają tę ciekawą właściwość, że na przedziale przyjmują wszystkie wartości pośrednie. To znaczy, że jeśli na przykład w punkcie $$x = 0 f(x) = 2$$, a w punkcie $$x = 1 f(x) = -2$$, to wiemy, że w tym przedziale na pewno znajdzie się taki punkt $$a$$, że $$f(a) = 0$$. (Oczywiście funkcja musi być określona na całym tym przedziale)

Ważne jest to, że wykonując operacje arytmetyczne oraz składając funkcje ciągłe otrzymujemy zawsze funkcje ciągłe - dlatego wszystkie "normalne", tzn określone "prostym" wzorem (jak na przykład wielomiany lub funkcje trygonometryczne) będą ciągłe.
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom