Matematyka

Wykres funkcji g(x) otrzymano wyniku... 4.71 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 1 Klasa
  3. Matematyka

Gdy przekształcamy wykres funkcji  w symetrii względem osi  wówczas zachodzi: 

 

Zatem:

 

Prawidłowa odpowiedź to    

DYSKUSJA
klasa:
Informacje
Autorzy: Aleksandra Ciszkowska, Alina Przychoda, Zygmunt Łaszczyk
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302127205
Autor rozwiązania
user profile

Dagmara

10674

Nauczyciel

Wiedza
Funkcja ciągła
Funkcja ciągła to intuicyjnie taka funkcja, którą można narysować bez odrywania ołówka od kartki - nie ma żadnych nagłych "przeskoków". Jednak ta definicja, poza tym, że jest mało precyzyjna, zawiera błąd. Na przykład funkcję $$f(x) = frac{1}{x}$$ nazywamy funkcją ciągłą, mimo, że przecież nie da się narysować jej wykresu od $$-1$$ do $$1$$ bez odrywania ołówka. Dzieje się tak, ponieważ funkcja może być ciągła tylko w swojej dziedzinie - poza dziedziną przecież "nie istnieje", więcn nie można nic o niej powiedzieć.

Precyzyjną definicją ciągłości jest to, czy dla każdego $$x f(x)$$ jest równe granicy w tym punkcie. Intuicyjnie wydaje się to poprawne: jeśli coraz bardziej zbliżamy się do punktu $$x_0$$ i jesteśmy coraz bliżej jego wartości, to jeśli w końcu dotrzemy w $$x_0$$, to powinniśmy tam znaleźć wartość właśnie $$f(x_0)$$.

Funkcje ciągłe mają tę ciekawą właściwość, że na przedziale przyjmują wszystkie wartości pośrednie. To znaczy, że jeśli na przykład w punkcie $$x = 0 f(x) = 2$$, a w punkcie $$x = 1 f(x) = -2$$, to wiemy, że w tym przedziale na pewno znajdzie się taki punkt $$a$$, że $$f(a) = 0$$. (Oczywiście funkcja musi być określona na całym tym przedziale)

Ważne jest to, że wykonując operacje arytmetyczne oraz składając funkcje ciągłe otrzymujemy zawsze funkcje ciągłe - dlatego wszystkie "normalne", tzn określone "prostym" wzorem (jak na przykład wielomiany lub funkcje trygonometryczne) będą ciągłe.
Wyznaczanie wzoru funkcji

Rozwiązywanie układu dwóch równań liniowych za pomocą metody graficznej polega na narysowaniu dwóch wykresów funkcji liniowej i znalezienia ich punktu wspólnego. Dokładnie czym jest funkcja liniowa, możesz przeczytać w osobnym dziale. Przypomnijmy jedynie, że wzór ogólny na funkcję liniową to:

$$y=ax+b$$

Gdzie:

x, y – współrzędne

a, b – współczynniki (dowolne liczby rzeczywiste)

Zatem, żeby zastosować interpretację graficzną, potrzebujemy doprowadzić układ równań do postaci:

img01
Zatem naszym zadaniem głównym jest wyznaczenie y z obu wzorów. Pokażemy to teraz na przykładzie.
 

  • img02

    Robimy krok po kroku

    1. Przenieś y na lewą stronę (zamieniając znak), jeśli jest po lewej stronie to przejdź do kroku 2,

    2. Przenieś wszystko poza y na stronę prawą pamiętając o zmianie znaku,

    3. Podziel całe równanie przez liczbę stojącą przy y jeśli jest różna od 1

    4. Powtórz kroki 1-3 dla drugiego równania

    Zaczynamy, krok 1:

    img03
    y jest po lewej stronie w obu równaniach, więc przechodzimy do kroku 2.

    img04
    Jak widać $$2x$$ i $$4x$$ zostało przeniesione i zmieniliśmy im znak na $$-2x$$ i $$-4x$$

    Mamy już same y po lewej stronie, zatem krok 3:

    img05
    Dzielimy każdy składnik równania czyli liczby oddzielone +,- lub =

    img06
    Mamy już nasz y w obu równaniach

    img07
    Zróbmy drobną korektę (zamieńmy miejscami x z drugą liczbą)

    img08

Uzyskaliśmy w ten sposób dwa wzory funkcji, dzięki którym narysujemy dwa wykresy. Zanim jeszcze to zrobimy potrzebujemy wykonać tabelki.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom