Matematyka

Matematyka z plusem 4. Geometria. Wersja A (Zeszyt ćwiczeń, GWO)

Podpisz narysowane figury. 4.77 gwiazdek na podstawie 13 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Matematyka

Podpisz narysowane figury.

1
 Zadanie

2
 Zadanie

DYSKUSJA
user profile image
Iwona Michalczyk

18 lutego 2018
czy na pewno łamana pączek to łamana otwarta
user profile image
Piotrek

5807

19 lutego 2018

Punkt P nie łączy się z punktem K, więc jest to łamana otwarta. Pozdrawiam!

user profile image
Gość

5 lutego 2018
Pomórzcie prosze!!!!!!😓😓
user profile image
Odrabiamy.pl

779

5 lutego 2018

@Gość Cześć, w czym mogę pomóc? 

user profile image
Gość

19 lutego 2018
Nie wiem jak zrobić str11zad 3 Geometria
user profile image
Odrabiamy.pl

779

19 lutego 2018

@Gość Cześć, rozwiązanie zadania 3 jest dostępne tutaj: Link . Pozdrawiam

user profile image
Gość

1

24 stycznia 2018
Przyjmij za jednostke długośc
user profile image
Odrabiamy.pl

779

25 stycznia 2018

@Gość Cześć, Twoje pytanie wiąże się z treścią innego zadania. Napisz komentarz pod zadaniem, z którym masz problem, a na pewno nasi nauczyciele Ci je wyjaśnią.

Informacje
Autorzy: Piotr Zarzycki
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Równość ułamków

Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.

Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.

  • Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:

      $$3/5=9/{15}={27}/{45}=...$$
       
  • Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:

      $$8/{16}=4/8=2/4=1/2$$ 
 
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Udostępnij zadanie