Matematyka

Punkty O=(0, 0), A=(x, 3) i B=(-x, 3) 4.67 gwiazdek na podstawie 9 opinii
  1. Liceum
  2. 1 Klasa
  3. Matematyka

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup pakiet Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
komentarz do zadania Punkty O=(0, 0), A=(x, 3) i B=(-x, 3) - Zadanie 6: MATeMAtyka 1. Zakres podstawowy - strona 180
Żaneta

21 maja 2018
dzieki :):)
komentarz do zadania Punkty O=(0, 0), A=(x, 3) i B=(-x, 3) - Zadanie 6: MATeMAtyka 1. Zakres podstawowy - strona 180
Zuzanna

12 listopada 2017
Dziękuję!!!!
opinia do odpowiedzi Punkty O=(0, 0), A=(x, 3) i B=(-x, 3) - Zadanie 6: MATeMAtyka 1. Zakres podstawowy - strona 180
Daniel

6 października 2017
Dziękuję :)
klasa:
Informacje
Autorzy: Wojciech Babiański, Lech Chańko, Dorota Ponczek
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326721540
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Największy wspólny dzielnik (NWD)

Największy wspólny dzielnik (NWD) dwóch liczb naturalnych jest to największa liczba naturalna, która jest dzielnikiem każdej z tych liczb.

Przykłady:

  • Największy wspólny dzielnik liczb 6 i 9 to liczba 3.

    1. Wypiszmy dzielniki liczby 6: 1, 2, 3, 6.
    2. Wypiszmy dzielniki liczby 9: 1, 3, 9.
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 6 i 9. Jest to 3.

  • Największy wspólny dzielnik liczb 12 i 20 to liczba 4.

    1. Wypiszmy dzielniki liczby 12: 1, 2, 3, 4, 6, 12.
    2. Wypiszmy dzielniki liczby 20: 1, 2, 4, 5, 10, 20.
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 12 i 20. Jest to 4.


Największy wspólny dzielnik 
dwóch liczb można znaleźć także wykorzystując rozkład na czynniki pierwsze. 

Aby znaleźć NWD dwóch liczb należy: 

  1. Rozłożyć liczby na czynniki pierwsze. 

  2. Zaznaczyć wspólne dzielniki obu liczb. 

  3. Obliczyć iloczyn wspólnych czynników (zaznaczonych czynników).  

Przykład:

Liczby mieszane i ich zamiana na ułamek niewłaściwy

ulamek

Liczba mieszana składa się z części całkowitej (jest nią liczba naturalna) oraz części ułamkowej (jest nią ułamek zwykły właściwy).


Zamiana liczby mieszanej na ułamek niewłaściwy

Licznik tego ułamka otrzymujemy w następujący sposób: 

  1. Mianownik części ułamkowej mnożymy razy część całkowitą liczby mieszanej.

  2. Do otrzymanego iloczynu dodajemy licznik części ułamkowej.

Mianownik szukanego ułamka niewłaściwego jest równy mianownikowi części ułamkowej liczby mieszanej.

Przykłady: 

`3 1/4=(3*4+1)/4=13/4` 

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom