Matematyka

Policzmy to razem 2 (Podręcznik, Nowa Era)

Wyznacz najmniejszą liczbę naturalną n, dla której istnieje trójkąt 4.6 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Matematyka

Wyznacz najmniejszą liczbę naturalną n, dla której istnieje trójkąt

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie

6
 Zadanie

7
 Zadanie
8
 Zadanie

Aby trójkąt się "złożył" suma dwóch dowolnych boków musi być zawsze większa od trzeciego boku. Mamy więc do rozwiązania 3 nierówności. 

 

`p ierwsza`

`4n+7n>6n+24`

`11n>6n+24\ \ \ |-6n`

`5n>24\ \ \ |:5`

`n>24/5`

`n>4 4/5`

 

 

`druga`

`4n+6n+24>7n`

`10n+24>7n\ \ \ |-7n`

`3n+24>0\ \ \ |:3`

`n+8>0`

Ta nierównośc jest spełniona zawsze, bo n jest liczbą naturalną, jeśli dodamy do niej 8, to wynik na pewno będzie dodatni. 

 

 

`trzecia`

`7n+6n+24>4n`

`13n+24>4n\ \ \ |-4n`

`9n+24>0`

Ta nierówność także jest spełniona zawsze

 

Zatem najmniejsza liczba naturalna, dla której istnieje trójkąt o bokach długości 4n, 7n, 6n+24, to 5.  

 

DYSKUSJA
Informacje
Policzmy to razem 2
Autorzy: Jerzy Janowicz
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Liczby mieszane i ich zamiana na ułamek niewłaściwy
ulamek

Liczba mieszana jest to suma dwóch składników, z których jeden jest liczbą naturalną (składnik całkowity), a drugi ułamkiem zwykłym właściwym (składnik ułamkowy).

$$4 1/9= 4 + 1/9 $$ ← liczbę mieszana zapisujemy bez użycia znaku dodawania +.

Zamiana liczby mieszanej na ułamek niewłaściwy

Licznik tego ułamka otrzymujemy w następujący sposób: mianownik składnika ułamkowego mnożymy przez składnik całkowity i do tego iloczynu dodajemy licznik składnika ułamkowego. Mianownik natomiast jest równy mianownikowi składnika ułamkowego.

Przykład:

$$3 1/4= {3•4+1}/4= {13}/4$$
 
Ułamki właściwe i niewłaściwe
  1. Ułamek właściwy – ułamek, którego licznik jest mniejszy od mianownika. Ułamek właściwy ma zawsze wartość mniejszą od 1.
    Przykłady: $$3/8$$, $${23}/{36}$$, $$1/4$$, $$0/5$$.
     

  2. Ułamek niewłaściwy – ułamek, którego mianownik jest równy lub mniejszy od licznika. Ułamek niewłaściwy ma zawsze wartość większą od 1.
    Przykłady: $${15}/7$$, $$3/1$$, $${129}/5$$, $${10}/5$$.
     

Zobacz także
Udostępnij zadanie