Matematyka

Matematyka z kluczem 5. Podręcznik cz. 2 (Podręcznik, Nowa Era)

Podaj pole figury przedstawionej na rysunku. a) 4.55 gwiazdek na podstawie 31 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Podaj pole figury przedstawionej na rysunku. a)

I
 Zadanie

II
 Zadanie
III
 Zadanie

 

 

a)

 

I

`a= 3cm`

`b= 1cm`

`P_I=3cm*1cm= 3cm^2`

II

`a=1cm`

`b=1cm`

`P_(II)=1cm*1cm=1cm^2`

 

`P_I+P_(II)=1cm^2+3cm^2=4cm^2`

 

b)

`P_I=((1cm+2cm)*1/2 cm)/2= (3/2cm^2)/2=3/4 cm^2`

`P_(II)=((2cm+3cm)*1/2cm)/2= (5/2cm^2)/2=5/4 cm^2= 1 1/4 cm^2`

`P_(III)=2 1/2 cm* 1/2 cm= 5/2 cm* 1/2 cm= 5/4 cm^2=1 1/4 cm^2`

`P_(IV)= 3cm* 1/2 cm= 3/2 cm= 1 1/2cm^2`

`P_V= 1/2 * 1cm * 2 cm= 1 cm^2`

`P_I+P_(II)+P_(III)+P_(IV)_+P_V= 3/4 cm^2+ 1 1/4 cm^2+ 1 1/4 cm^2+ 1 1/2cm^2+ 1cm^2= 3 1/4 cm^2+ 1 2/4 cm^2+1cm^2= 5 3/4 cm^2`

DYSKUSJA
user profile image
Wiola

18 grudnia 2017
dzieki
user profile image
michal05

8 maja 2017
Można mi wytumaczyć jak zostało zrobione b ?
user profile image
Monika

10253

8 maja 2017
@michal05 Cześć, figura z punktu b) została podzielona na mniejsze figury. Suma pól figur będzie równa polu całej figury. Pozdrawiamy!
Informacje
Matematyka z kluczem 5. Podręcznik cz. 2
Autorzy: Agnieszka Mańkowska, Małgorzata Paszyńska, Marcin Braun
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Monika

10253

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Mnożenie i dzielenie

Kolejnymi działaniami, które poznasz są mnożenie i dzielenie.

  1. Mnożenie to działanie przyporządkowujące dwóm liczbom a i b liczbę c = a•b (lub a×b). Mnożone liczby nazywamy czynnikami, a wynik mnożenia iloczynem.

    mnożenie liczb

    Mnożenie jest:

    1. przemienne (czynniki można zamieniać miejscami) , np. 3 • 2 = 2 • 3
    2. łączne (gdy mamy większą liczbę czynników możemy je mnożyć w dowolnej kolejności),
      np. $$(3 • 5) • 2 = 3 • (5 • 2)$$
    3. rozdzielne względem dodawania i odejmowania
      np. 2 • (3 + 4) = 2 • 3 + 2 • 4
      2 • ( 4 - 3) = 2 • 4 - 2 • 3
      Wykorzystując łączność mnożenia można zdecydowanie łatwiej uzyskać iloczyn np.: 4 • 7 • 5 = (4 • 5) • 7 = 20 • 7 = 140
  2. Dzielenie
    Podzielić liczbę a przez b oznacza znaleźć taką liczbę c, że $$a = b • c$$, np. $$12÷3 = 4$$, bo $$12 = 3 • 4$$.
    Wynik dzielenia nazywamy ilorazem, a liczby odpowiednio dzielną i dzielnikiem.

    dzielenie liczb

    Dzielenie podobnie jak odejmowanie nie jest ani przemienne, ani łączne
     

  Ciekawostka

Znak x (razy) został wprowadzony w 1631 przez angielskiego matematyka W. Oughtreda, a symbol ͈„•” w 1698 roku przez niemieckiego filozofa i matematyka G. W. Leibniz'a.

Zamiana ułamka zwykłego na dziesiętny

Jeżeli ułamek zwykły posiada w mianowniku 10, 100, 1000, … to zamieniamy go na ułamek dziesiętny w następujący sposób: między cyframi liczby znajdującej się w liczniku danego ułamka zwykłego stawiamy przecinek tak, aby po przecinku było tyle cyfr, ile zer w mianowniku. Gdyby zabrakło cyfr przy stawianiu przecinka, to należy dopisać brakującą ilość zer.

Przykłady:

  • $$3/{10}= 0,3$$ ← przepisujemy liczbę 3 z licznika i stawiamy przecinek tak, aby po przecinku była jedna cyfra (bo w mianowniku mamy jedno zero); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${64}/{100}= 0,64$$ ← przepisujemy liczbę 64 z licznika i stawiamy przecinek tak, aby po przecinku były dwie cyfry (bo w mianowniku mamy dwa zera); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${482}/{1000} = 0,482$$ ← przepisujemy liczbę 482 z licznika i stawiamy przecinek tak, aby po przecinku były trzy cyfry (bo w mianowniku mamy trzy zera); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${45}/{10}= 4,5$$ ← przepisujemy liczbę 45 z licznika i stawiamy przecinek tak, aby po przecinku była jedna cyfra (bo w mianowniku mamy jedno zero); w tym przypadku nie ma potrzeby dopisywania zer,

  • $${2374}/{100}= 23,74$$ ← przepisujemy liczbę 2374 z licznika i stawiamy przecinek tak, aby po przecinku były dwie cyfry (bo w mianowniku mamy dwa zera); w tym przypadku nie ma potrzeby dopisywania zer.

  Uwaga

Istnieją ułamki zwykłe, które możemy rozszerzyć lub skrócić tak, aby otrzymać w mianowniku 10, 100, 1000,... Jednak nie wszystkie ułamki można zamienić na równe im ułamki dziesiętne, to znaczy tak rozszerzyć lub skrócić, aby otrzymać ułamek o mianowniku 10, 100, 1000 itd.

Przykłady ułamków, które dają się rozszerzyć lub skrócić, tak aby otrzymać ułamek dziesiętny:
$$1/2= {1•5}/{2•5}=5/{10}= 0,5$$
$$3/{20}= {3•5}/{20•5}= {15}/{100}= 0,15$$
$${80}/{400}= {80÷4}/{400÷4}={20}/{100}= 2/{10}= 0,2$$

Nie można natomiast zamienić na ułamek dziesiętny ułamka $$1/3$$. Ułamka tego nie można skrócić ani rozszerzyć tak, aby w mianowniku pojawiła się liczba 10, 100, 1000 itd.

Zobacz także
Udostępnij zadanie