Matematyka

Matematyka z kluczem 5. Podręcznik cz. 2 (Podręcznik, Nowa Era)

Oblicz pisemnie. -> Jeśli rozwiążesz poprawnie trzy 4.73 gwiazdek na podstawie 11 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Oblicz pisemnie. -> Jeśli rozwiążesz poprawnie trzy

1
 Zadanie

2
 Zadanie

poziom A

 

poziom B

 

poziom C

poziom MISTRZ

Ponieważ są to iloczyny kilka składników, mnożenie pisemne należy przeprowadzić etapowo. 

 

DYSKUSJA
user profile image
Gość

10-04-2017
najlepsza strona Ever
Informacje
Matematyka z kluczem 5. Podręcznik cz. 2
Autorzy: Agnieszka Mańkowska, Małgorzata Paszyńska, Marcin Braun
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Monika

6780

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Obwód

Obwód wielokąta to suma długości boków danego wielokąta.

  1. Obwód prostokąta – dodajemy długości dwóch dłuższych boków i dwóch krótszych.

    Zatem prostokąt o wymiarach a i b ma obwód równy:
    Obwód prostokąta: $$Ob = 2•a+ 2•b$$.

    Przykład: Policzmy obwód prostokąta, którego boki mają długości 6 cm i 8 cm.

    ob_kwadrat

    $$Ob=2•8cm+2•6cm=16cm+12cm=28cm$$
     

  2. Obwód kwadratu – dodajemy długości czterech identycznych boków, zatem wystarczy pomnożyć długość boku przez cztery.

    Zatem kwadrat o boku długości a ma obwód równy:
    Obwód kwadratu: $$Ob = 4•a$$.

    Przykład: Policzmy obwód kwadratu o boku długości 12 cm.

    ob_prostokat

    $$Ob=4•12cm=48cm$$

 
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Udostępnij zadanie