Matematyka

Matematyka z kluczem 5. Podręcznik cz. 1 (Podręcznik, Nowa Era)

Wykonaj polecenia. -> Jeśli poprawnie rozwiążesz dwa kolejne przykłady 4.63 gwiazdek na podstawie 8 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Matematyka

Wykonaj polecenia. -> Jeśli poprawnie rozwiążesz dwa kolejne przykłady

1
 Zadanie

rownanie matematyczne 

rownanie matematyczne

 rownanie matematyczne

 rownanie matematyczne

rownanie matematyczne

 rownanie matematyczne

rownanie matematyczne

 

rownanie matematyczne

rownanie matematyczne

rownanie matematyczne 

rownanie matematyczne

rownanie matematyczne

rownanie matematyczne 

rownanie matematyczne 

 

rownanie matematyczne

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne

rownanie matematyczne

rownanie matematyczne

 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne 

rownanie matematyczne

rownanie matematyczne

DYSKUSJA
user avatar
Gość

10 stycznia 2018
a weżniesz dodasz zadanie 1 z strony 130 plis to na jutro
user avatar
Odrabiamy.pl

842

10 stycznia 2018

@Gość Cześć. Rozwiązanie zadanie 1 ze strony 130 jest dostępne tutaj: Link . Pozdrawiam

user avatar
Ala

5 dni temu
Dziękuję!
user avatar
sonia

6 lutego 2018
Dziękuję!
user avatar
Loffcia

25 października 2017
dzięki!!!!
Informacje
Autorzy: Marcin Braun, Agnieszka Mańkowska, Małgorzata Paszyńska
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326733314
Autor rozwiązania
user profile

Monika

10232

Nauczyciel

Wiedza
Działania na liczbach naturalnych
  1. Dodawanie liczb naturalnych

    dodawanie liczb naturalnych

    Własności dodawania liczb naturalnych:

    • Suma dowolnych liczb naturalnych jest liczbą naturalną,
    • $$a + 0 = a$$,
    • $$a + b = b + a$$ (przemienność dodawania – suma dowolnych liczb naturalnych nie zależy od kolejności składników),
    • $$a + ( b + c ) = ( a + b ) + c$$ (łączność dodawania – suma liczb naturalnych nie zależy od tego, które dwie liczby dodamy jako pierwsze – możemy najpierw dodać dwie pierwsze liczby, a do uzyskanej sumy dodać trzecią liczbę, albo możemy najpierw dodać liczby drugą i trzecią, a do uzyskanej sumy dodać pierwszą liczbę),
    • Jeżeli $$a + c = b + c$$, to $$a = b$$ (prawo skreślania wspólnego składnika).
       
  2. Odejmowanie liczb naturalnych

    odejmowanie liczb

    Własności odejmowania liczb naturalnych:

    • Różnica dwóch liczb naturalnych jest liczbą naturalną tylko wtedy, gdy odjemna jest większa od odjemnika lub równa odjemnikowi,
    • Jeżeli $$a – b = 0$$, to $$a = b$$. Jeżeli $$a = b$$, to $$a – b = 0$$
    • Jeżeli $$a – b$$ > 0, to a > b. Jeżeli a > b, to $$a – b$$ > 0
       
  3. Mnożenie liczb naturalnych

    img04

    Własności mnożenia liczb naturalnych:

    • Iloczyn liczb naturalnych jest liczbą naturalną,
    • $$a•1=a$$,
    • $$a•b=b•a$$ (przemienność mnożenia – iloczyn liczb naturalnych nie zależy od kolejności czynników),
    • $$a•(b•c)=(a•b)•c$$ (łączność mnożenia – iloczyn trzech liczb naturalnych nie zależy od sposobu łączenia czynników w grupy – to znaczy nie ma znaczenia które dwie liczby pomnożymy jako pierwsze, możemy najpierw pomnożyć dwie pierwsze liczby i otrzymany iloczyn pomnożyć przez trzecią liczbę lub możemy najpierw pomnożyć liczbę drugą i trzecią, a następnie otrzymany iloczyn pomnożyć przez pierwszą liczbę),
    • $$a•0=0$$ (iloczyn dowolnej liczby naturalnej a i liczby 0 jest równy 0),
    • Jeżeli iloczyn liczb naturalnych jest równy 0, to co najmniej jeden z czynników jest liczbą 0,
    • Jeżeli $$a•c=b•c$$ oraz $$c≠0$$, to $$a=b$$ (prawo skreślania wspólnego czynnika),
    • $$a•(b+c)=a•b+a•c$$ (rozdzielność mnożenia względem dodawania – mnożąc sumę przez liczbę naturalną możemy każdy składnik pomnożyć przez tę liczbę, a następnie dodać otrzymane wyniki).
       
  4. Dzielenie liczb naturalnych

    Dzielenie liczb naturalnych

    Własności dzielenia liczb naturalnych:

    • Iloraz dwóch liczb naturalnych nie zawsze daje w wyniku liczbę naturalną. Aby iloraz dwóch liczb był liczbą naturalną, dzielna musi być wielokrotnością dzielnika,
    • $$a÷1 = a$$,
    • Jeżeli a≠0, to $$a÷a=1$$,
    • (a+b)÷c=a÷c + b÷c (rozdzielność dzielenia względem dodawania – dzieląc sumę przez liczbę naturalną różną od 0 możemy najpierw każdy składnik podzielić przez tę liczbę a następnie dodać otrzymane wyniki).
       
Kolejność wykonywania działań

Przy rozwiązywaniu działań najważniejsze jest zachowanie odpowiedniej kolejności wykonywania działań.


Kolejność wykonywania działań:

  1. Działania w nawiasach

  2. Potęgowanie

  3. Mnożenie i dzielenie (jeżeli w działaniu występuje zarówno dzielenie jak i mnożenie, to działania wykonujemy w kolejności w jakiej są zapisane, czyli od lewej do prawej strony).
    Przykład`16:2*5=8*5=40` 

  4. Dodawanie i odejmowanie (jeżeli w działaniu występuje zarówno odejmowanie jak i dodawanie, to działania wykonujemy w kolejności w jakiej są zapisane, czyli od lewej strony do prawej).
    Przykład`24-6+2=18+2=20` 


Przykład:

`(45-9*3)-4=(45-27)-4=18-4=14` 

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom