Język polski

Słowa z uśmiechem 5. Nauka o języku. Ortografia (Podręcznik, WSiP)

Dopasuj słowa z ramki do postaci 4.71 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Język polski

Dopasuj słowa z ramki do postaci

1
 Zadanie

2
 Zadanie
3
 Zadanie
To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
user profile image
Gość

04-12-2017
Dopasuj słowa z ramki do postaci na zdjęciach. Wymień je w kolejności alfabetycznej
user profile image
Iwona

9369

04-12-2017

@Gość Witam serdecznie, rozwiązanie tego zadania jest dostępne po wykupieniu konta Premium. Pozdrawiam!

user profile image
Gość

21-11-2017
Dlaczego trzeba płacić
user profile image
Odrabiamy.pl

389

21-11-2017

@Gość Cześć, zadania premium pomagają nam w utrzymaniu i rozwoju strony. Bez pomocy użytkowników serwis nie mógłby istnieć.

Informacje
Słowa z uśmiechem 5. Nauka o języku. Ortografia
Autorzy: Ewa Horwath, Anita Żegleń
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Iwona

9369

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $$P = a•b$$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $$P=a•a=a^2$$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $$ P=2 cm•4 cm=8 cm^2 $$
    Pole tego prostokąta jest równe 8 $$cm^2$$.

Równość ułamków

Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.

Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.

  • Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:

      $$3/5=9/{15}={27}/{45}=...$$
       
  • Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:

      $$8/{16}=4/8=2/4=1/2$$ 
 
Zobacz także
Udostępnij zadanie