Kompass - Training 3 - Zadanie 44: Kompass neu 3 - strona 83
Język niemiecki
Wybierz książkę
Kompass - Training 3 4.57 gwiazdek na podstawie 14 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Język niemiecki

Kompass - Training 3

44
 Zadanie

anprobieren - przymierzać

aussehen - wyglądać

passen - pasować

verabreden sich - umawiać się z kimś

verdienen - zarabiać

 

der Anorak - nieprzemakalna kurtka z kapturem

die Bäckerei - piekarnia

die Buchhandlung - księgarnia

das Einkaufszentrum - centrum handolwe

das Gebäck - pieczywo

das Gesicht - twarz

der Gürtel - pasek

der Handschuh - rękawiczka

die Imbissbude - budka z przekąskami

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
komentarz do odpowiedzi undefined
Ania

25 kwietnia 2018
Dzięki :):)
opinia do rozwiązania undefined
Melania

27 marca 2018
dzieki!!!!
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Elżbieta Reymont, Agnieszka Sibiga, Małgorzata Jeziorska-Wiejak
Wydawnictwo: PWN
Rok wydania:
ISBN: 9788326225215
Autor rozwiązania
user profile

Ewa

6957

Korepetytor

Wiedza
Ułamki dziesiętne i ich budowa
Ułamki dziesiętne to takie ułamki, których mianownikami są liczby 10, 100, 1000...

Przykłady:

  • $1/{10}= 0,1$
  • $2/{100}= 0,02$
  • ${15}/{100}= 0,15$
  • $3/{1000}= 0,003$
  • ${25}/{10}= 2,5$

Ułamki dziesiętne zapisujemy bez użycia kreski ułamkowej, natomiast stosujemy przecinek (zwany przecinkiem dziesiętnym), który oddziela część całkowitą od części ułamkowej.
 

rys1
 

Pierwsze miejsce po przecinku oznacza części dziesiąte, drugie - części setne, trzecie - części tysiączne, czwarte - części dziesięciotysięczne itd.

Przykład:

cyfry po przecinku
 

Powyższy ułamek możemy rozpisać:

$0,781= {700}/{1000}+{80}/{1000}+1/{1000}=7/{10}+8/{100}+1/{1000}$ -> łatwo zauważyć, że 7 to części dziesiąte, 8 części setne, a 1 to części tysięczne.

  Ciekawostka

Zapis dziesiętny liczb został opracowany w XV wieku przez perskiego matematyka Al-Kaszi, w jego dziele Miftah al-hisab (Klucz do arytmetyki). Rozpowszechnienie zawdzięczamy jednak holenderskiemu uczonemu Simonowi Stevinowi, który 1585 r. w swej pracy De Thiende (Dziesięcina) omówił istotę ułamków dziesiętnych. Notacja Stevina odbiegała od obecnie stosowanej i była dość skomplikowana, została więc szybko zmieniona. Liczby z przecinkiem błyskawicznie przyjęły się i liczbę wymierną można było wyrazić już nie tylko w postaci ułamka zwykłego. Oddzielenie przecinkiem całości od części dziesiętnych było pomysłem angielskiego matematyka. J. Nepera.

Pole prostokąta

Liczbę kwadratów jednostkowych potrzebnych do wypełnienia danego prostokąta nazywamy polem prostokąta.


Prostokąt o bokach długości a i b ma pole równe: $P = a•b$.

pole prostokąta

W szczególności: pole kwadratu o boku długości a możemy policzyć ze wzoru: $P=a•a=a^2$.

  Zapamiętaj

Przed policzeniem pola prostokąta pamiętaj, aby sprawdzić, czy boki prostokąta są wyrażone w takich samych jednostkach.

Przykład:

  • Oblicz pole prostokąta o bokach długości 2 cm i 4 cm.

    $ P=2 cm•4 cm=8 cm^2 $
    Pole tego prostokąta jest równe 8 $cm^2$.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2718ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA6157WIADOMOŚCI
NAPISALIŚCIE773KOMENTARZY
komentarze
... i8018razy podziękowaliście
Autorom