
Czworokąt to wielokąt o czterech bokach (a tym samym o czterech wierzchołkach i o czterech kątach). Przykłady czworokątów: prostokąt, kwadrat, romb, równoległobok, trapez.
Suma miar kątów wewnętrznych dowolnego czworokąta. Dowolny czworokąt można podzielić przy pomocy przekątnej na dwa trójkąty. Wiemy, że suma miar kątów wewnętrznych dowolnego trójkąta jest równa 180°.
Zatem suma miar kątów czworokąta jest równa $2•180°= 360°$. Suma miar kątów wewnętrznych dowolnego czworokąta jest równa 360°.
Objętość graniastosłupa jest to zawartość lub pojemność danego graniastosłupa. Objętość naczynia mówi nam ile np. piasku lub wody zmieści się w danym naczyniu Inaczej mówiąc: objętość figury przestrzennej jest to liczba dodatnia wyrażona w danej jednostce, która wskazuje, ile jednostek objętości (czyli sześcianów jednostkowych) potrzeba, aby wypełnić i jednocześnie pokryć tę figurę.
Wielokąt (czyli figura płaska) ma objętość równą zero. Każdy graniastosłup ma objętość dodatnią. Objętość oznaczamy literą V.
Jednostki objętości - służą do określenia objętości danej bryły, mówią nam ile maksymalnie sześcianów jednostkowych mieści się wewnątrz danej bryły. Jednostką objętości może być dowolny sześcian, jednak najczęściej używane są poniżej przedstawione jednostki, które ułatwiają przekazywanie informacji o objętościach brył:
Do określania objętości cieczy używamy dwóch podstawowych jednostek: litrów oraz mililitrów.
$1 cm^3$ nazywamy mililitrem; $1 ml = 1 cm^3$
$1 dm^3$ nazywamy litrem; $1 l = 1 dm^3$
Wzór na objętość graniastosłupa prostego:
Zadanie.
Wyznacz wzór na objętość prostopadłościanu.
Zadanie.
Napiszmy wzór na objętość sześcianu.
Wszystkie krawędzie sześcianu mają jednakową długość.