1. (przykład)
Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.
$$P_p$$ -> pole powierzchni
Każdy prostopadłościan ma 3 pary takich samych ścian.
Pole powierzchni oblicza się z poniższego wzoru, gdzie $$P_1$$, $$P_2$$ i $$P_3$$ to pola ścian prostopadłościanu.
$$P_p=2•P_1+2•P_2+2•P_3$$Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $$P_p=6•P$$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $$P_p = 6•a•a = 6•a^2$$ (a - bok sześcianu).
Cechy podzielności liczb ułatwiają znalezienie dzielników, zwłaszcza dużych liczb.
Dzielnik liczby to taka liczba, przez którą dana liczba jest podzielna. Dzielnikiem każdej liczby naturalnej n (n>1) jest 1 oraz ona sama.
Cechy podzielności:
Podzielność liczby przez 2
Liczba jest podzielna przez 2, gdy jej ostatnią cyfrą jest 0, 2, 4, 6 lub 8.
Przykład:
Podzielność liczby przez 3
Liczba jest podzielna przez 3, gdy suma jej cyfr jest liczbą podzielną przez 3.
Przykład:
Podzielność liczby przez 4
Liczba jest podzielna przez 4, gdy jej dwie ostatnie cyfry tworzą liczbę podzielną przez 4.
Przykład:
Podzielność liczby przez 5
Liczba jest podzielna przez 5, gdy jej ostatnią cyfrą jest 0 lub 5.
Przykład:
Podzielność liczby przez 6
Liczba jest podzielna przez 6, gdy jednocześnie dzieli się przez 2 i 3.
Przykład:
Podzielność liczby przez 9
Liczba jest podzielna przez 9, gdy suma jej cyfr jest liczbą podzielną przez 9.
Przykład:
Podzielność liczby przez 10
Liczba jest podzielna przez 10, gdy jej ostatnią cyfra jest 0.
Przykład:
Podzielność liczby przez 25
Liczba jest podzielna przez 25, gdy dwie ostatnie cyfry tworzą liczbę podzielną przez 25.
Przykład:
Podzielność liczby przez 100
Liczba jest podzielna przez 100, gdy jej dwie ostatnie cyfry to zera.
Przykład: