Listen and read (...) - Zadanie 2: Discover English 3. Książka ucznia - strona 76
Język angielski
Discover English 3. Książka ucznia (Podręcznik, Pearson Education)
Listen and read (...) 4.43 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Język angielski

Listen and read (...)

1
 Zadanie

2
 Zadanie

Zadanie premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 6 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
6 szkoły podstawowej
Informacje
Autorzy: Jayne Wildman
Wydawnictwo: Pearson Education
Rok wydania:
ISBN: 9788378823056
Autor rozwiązania
user profile

Dominik

12957

Nauczyciel

Wiedza
Stereometria
Stereometria jest ważnym i dość trudnym (wymaga jeszcze więcej wyobraźni niż geometria) działem matematyki. Na kursie podstawowym były przedstawione podstawowe wzory opisujące pole powierzchni i objętość niektórych figur przestrzennych, więc tutaj tylko przypomnę, że jeśli mamy do czynienia z graniastosłupem lub walcem, to jego objętość jest równa $V = P_p×H$, natomiast w przypadku ostrosłupa lub stożka musimy wynik mnożenia podzielić przez 3.

Zajmiemy się teraz czymś bardziej zaawansowanym - określaniem kształtu przekroju sfery, graniastosłupa i ostrosłupa płaszczyzną.

Każdy przekrój sfery płaszczyzną jest okręgiem. Można się o tym przekonać obliczając po prostu odległość między jakimś punktem przecięcia i środkiem sfery.

Im mniejsza jest odległość między środkiem sfery a płaszczyzną, tym większy okrąg otrzymujemy, co jest raczej zrozumiałe. Jeśli zaś nasza płaszczyzna zawiera środek (czyli odległość jest równa zeru) mamy do czynienia z okręgiem wielkim, którego promień jest równy promieniowi sfery.

2b

3b

1b

W przypadku graniasto- i ostrosłupów sprawa się komplikuje. W wyniku przecięcia możemy otrzymać praktycznie dowolny wielokąt.

Jeśli przecinamy taką bryłę płaszczyzną równoległą do podstawy, kształt przekroju jest taki sam, jak kształt podstawy.

Jeśli przecinamy to jakąś inną płaszczyzną, możemy uzyskać nieskończenie wiele różnych kształtów: niektóre będą trójkątami, inne czworokątami lub wielokątami.

Aby rozpoznać kształt najprościej po prostu naryswować rysunek w przestrzeni i zaznaczyć przerywaną kreską linie przecięcia. Jeśli wydaje nam się, że kształt może być np. kwadratem, wykonujemy odpowiednie rachunki jak na przykład obliczenie wszystkich boków, aby się o tym przekonać.

1


2

3a
Okrąg wpisany w czworokąt
W przypadku okręgów wpisanych w czoworkąty warunek zależy od długości odpowiednich boków: musi zachodzić:
$AB + CD = BC + AD$

2

Dlaczego? Jeśli poprowadzimy cztery promienie (tak jak na rysunku) - przekonamy się, że zaznaczone trójkąty są podobne, więc sumując odpowiednie odcinki otrzymjemy:

$AW + CD = AW + WB + CY + YD = AZ + BX + CX + DZ = BC + AD$

 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom