Uzupełnij zdania, wstawiając (...). - Zadanie 2: New Exam Connections 2. Elementary - strona 48
Język angielski
New Exam Connections 2. Elementary (Zeszyt ćwiczeń, Oxford University Press)
Uzupełnij zdania, wstawiając (...). 4.57 gwiazdek na podstawie 7 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Język angielski

Uzupełnij zdania, wstawiając (...).

1
 Zadanie

2
 Zadanie

3
 Zadanie
4
 Zadanie
5
 Zadanie

2. -

3. to

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy I gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Select...
Informacje
Autorzy: Diana Pye, David McKeegan
Wydawnictwo: Oxford University Press
Rok wydania:
Autor rozwiązania
user profile

Kasia

5540

Nauczyciel

Wiedza
Ułamki dziesiętne i ich budowa
Ułamki dziesiętne to takie ułamki, których mianownikami są liczby 10, 100, 1000...

Przykłady:

  • $1/{10}= 0,1$
  • $2/{100}= 0,02$
  • ${15}/{100}= 0,15$
  • $3/{1000}= 0,003$
  • ${25}/{10}= 2,5$

Ułamki dziesiętne zapisujemy bez użycia kreski ułamkowej, natomiast stosujemy przecinek (zwany przecinkiem dziesiętnym), który oddziela część całkowitą od części ułamkowej.
 

rys1
 

Pierwsze miejsce po przecinku oznacza części dziesiąte, drugie - części setne, trzecie - części tysiączne, czwarte - części dziesięciotysiączne itd.

Przykłady:

cyfry po przecinku
 

Powyższy ułamek możemy rozpisać:

$0,781= {700}/{1000}+{80}/{1000}+1/{1000}=7/{10}+8/{100}+1/{1000}$
 

Zauważmy, że 7 to części dziesiąte, 8 części setne, a 1 to części tysięczne.
 

cyfry po przecinku

Powyższy ułamek możemy rozpisać:

$0,6278= {6278}/{10000}={6000}/{10000}+{200}/{10000}+{70}/{10000}+{8}/{10000}=6/{10}+2/{100}+7/{1000}+8/{10000} $
 

Zauważmy, że 6 to części dziesiąte, 2 części setne, 7 to części tysięczne, a 8 to części dziesięciotysięczne.

  Ciekawostka

Zapis dziesiętny liczb został opracowany w XV wieku przez perskiego matematyka Al-Kaszi, w jego dziele Miftah al-hisab (Klucz do arytmetyki). Rozpowszechnienie zawdzięczamy jednak holenderskiemu uczonemu Simonowi Stevinowi, który 1585 r. w swej pracy De Thiende (Dziesięcina) omówił istotę ułamków dziesiętnych. Notacja Stevina odbiegała od obecnie stosowanej i była dość skomplikowana, została więc szybko zmieniona. Liczby z przecinkiem błyskawicznie przyjęły się i liczbę wymierną można było wyrazić już nie tylko w postaci ułamka zwykłego. Oddzielenie przecinkiem całości od części dziesiętnych było pomysłem angielskiego matematyka. J. Nepera.

Pole prostokąta
Pole prostokąta

Wzór na pole prostokąta:

$P=a•b$ ; gdzie a, b - długości boków prostokąta.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom