Przyjrzyj się plakatowi z czasów wojny - Zadanie 4: My i historia 6. Historia i społeczeństwo - strona 73
Historia
My i historia 6. Historia i społeczeństwo (Zeszyt ćwiczeń, Nowa Era / PWN)
Przyjrzyj się plakatowi z czasów wojny 4.55 gwiazdek na podstawie 11 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Historia

Przyjrzyj się plakatowi z czasów wojny

4
 Zadanie

5
 Zadanie
6
 Zadanie

A. Do jakiego utworu literackiego nawiązują słowa zamieszczone na plakacie?

- Słowa zamieszczone na plakacie: "Nam twierdzą będzie każdy próg

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 6 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
komentarz do odpowiedzi undefined
Bożena

22 maja 2018
Dzięki
opinia do zadania undefined
Amanda

8 kwietnia 2018
dziena
opinia do odpowiedzi undefined
Kasia

25 marca 2018
Dzieki za pomoc :):)
klasa:
6 szkoły podstawowej
Informacje
Autorzy: My i historia 6. Historia i społeczeństwo
Wydawnictwo: Nowa Era / PWN
Rok wydania:
ISBN: 9788326729157
Autor rozwiązania
user profile

Paulina

71722

Nauczyciel

Wiedza
Zbiór wartości
Jest to z kolei zbiór możliwych y jakie może mieć funkcja, je również wyznaczamy metodą prostokąta i to dokładnie tego samego, co w przypadku dziedziny.

wyk3

Możliwe y to niebieska linia przecięta czerwonymi.

Zatem:

$y=<-1;3>$
 
Zależności i tożsamości trygonometryczne

Z działu trygonometria powinniśmy już potrafić praktycznie wszystko. Został jeden temat, który często się przewija. Między Funkcjami trygonometrycznymi występują specjalne zależności, o których właśnie napiszemy w tym temacie. Oto najważniejsze z tych zależności:
 

  • $sin^2 α+cos^2 α=1$
  • $g α={sin α}/{cos α}$
  • $ctg α={cos α}/{sin α}$
  • $g α=1/{ctg α}$


Powyższe zależności będą nam się przewijać w tak zwanych Tożsamościach trygonometrycznych. Czym one są?

Jest to równość zawsze prawdziwa, czyli takie równanie, gdzie lewa strona będzie się równać prawej, niezależnie od tego jaki kąt α wstawimy do tego równania (np. cztery podane powyżej zależności też są tożsamościami trygonometrycznymi).

Aby udowodnić tożsamość musimy doprowadzić jedną ze stron do identycznej postaci jak druga, czyli np. zmienić lewą aby przypominała prawą. Oczywiście możemy dążyć do ujednolicenia z obu stron naraz, czyli zmieniać zarówno lewą, jak i prawą stronę równania. Możemy przy tym używać 4 podanych wcześniej zależności (ich nie musimy udowadniać). Oczywiście wszystko najlepiej widać na przykładzie.

Przykład:

Udowodnij, że równanie $1+tg^2 α=1/{cos^2 α}$ jest poprawne.

Pamiętajmy o dziedzinie! W mianowniku nie może być 0, czyli:

$cos α≠0$

Musimy tutaj próbować użyć wszelkich dostępnych nam wzorów. Zacznijmy od małej analizy, nie traktujmy jedynki jak liczbę, lecz jako zależność z punktu pierwszego (patrz na cztery punkty wymienione na początku tematu):

$sin^2 α+cos^2 α+tg^2 α=1/{cos^2 α}$

Niby bardziej skomplikowane, ale prowadzi nas do rozwiązania. Rozbijmy teraz tangens za pomocą kolejnego wzoru (drugi z czterech podanych na początku punktów):

$sin^2 α+cos^2 α+{sin^2 α}/{cos^2 α}=1/{cos^2 α}$

Przenieśmy teraz ułamek tak, aby był wspólny mianownik:

$sin^2 α+cos^2 α=1/{cos^2 α}-{sin^2 α}/{cos^2 α}$

$sin^2 α+cos^2 α={1-sin^2 α}/{cos^2 α}$

Zobaczmy na licznik, mamy tu ewidentnie ukryty wzór nr 1:

$sin^2 α+cos^2 α={cos^2 α}/{cos^2 α}$

$sin^2 α+cos^2 α=1$

Co się zgadza z naszym wzorem nr 1, więc piszemy, że lewa strona jest równa prawej.

$L=P$
 

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom