Historia

Przeczytaj tekst piosenki z czasów 4.65 gwiazdek na podstawie 20 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Historia

Przeczytaj tekst piosenki z czasów

1
 Zadanie

2
 Zadanie

a) Jakie formy prześladowania Polaków pod okupacją opisuje tekst piosenki?

  • hycle (dosłownie oznaczają wyłapywanie bezdomnych zwierząt) urządzane przez Niemców Polakom;

Zadanie mega premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
user avatar
Gość

6 czerwca 2018
to ja dziękuje
user avatar
Agnieszka Matyjasik

26 maja 2018
dziękuje
user avatar
Gość

24 maja 2018
SuperowoPANI DZIIIIIEEEEEKKIII
user avatar
Gość

22 maja 2018
Dzk:)
user avatar
Gość

16 maja 2018
dziękuje
user avatar
Gość

12 maja 2018
Dzięki
user avatar
Gość

24 kwietnia 2018
Dzienkuje
user avatar
Gość

24 kwietnia 2018
Dzienkuje
user avatar
Hubert Szczudłowski

9 kwietnia 2018
dziękuję
user avatar
Gość

5 marca 2018
Dziena
user avatar
Gość

1

28 lutego 2018
😁😘 Thank you😘😁
user avatar
Antoni

22 lutego 2018
Dziena 👍
user avatar
Gość

21 lutego 2018
thx
user avatar
Arczi

1

6 stycznia 2018
Dzieki za pomoc!
user avatar
Gość

24 stycznia 2018
dzięki :D
pomogło ;D
klasa:
Informacje
Autorzy: Tomasz Maćkowski
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Paulina

54788

Nauczyciel

Wiedza
Zamiana ułamka zwykłego na dziesiętny

Jeżeli ułamek zwykły posiada w mianowniku 10, 100, 1000, … to zamieniamy go na ułamek dziesiętny w następujący sposób: między cyframi liczby znajdującej się w liczniku danego ułamka zwykłego stawiamy przecinek tak, aby po przecinku było tyle cyfr, ile zer w mianowniku. Gdyby zabrakło cyfr przy stawianiu przecinka, to należy dopisać brakującą ilość zer.

Przykłady:

  • $$3/{10}= 0,3$$ ← przepisujemy liczbę 3 z licznika i stawiamy przecinek tak, aby po przecinku była jedna cyfra (bo w mianowniku mamy jedno zero); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${64}/{100}= 0,64$$ ← przepisujemy liczbę 64 z licznika i stawiamy przecinek tak, aby po przecinku były dwie cyfry (bo w mianowniku mamy dwa zera); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${482}/{1000} = 0,482$$ ← przepisujemy liczbę 482 z licznika i stawiamy przecinek tak, aby po przecinku były trzy cyfry (bo w mianowniku mamy trzy zera); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • $${45}/{10}= 4,5$$ ← przepisujemy liczbę 45 z licznika i stawiamy przecinek tak, aby po przecinku była jedna cyfra (bo w mianowniku mamy jedno zero); w tym przypadku nie ma potrzeby dopisywania zer,

  • $${2374}/{100}= 23,74$$ ← przepisujemy liczbę 2374 z licznika i stawiamy przecinek tak, aby po przecinku były dwie cyfry (bo w mianowniku mamy dwa zera); w tym przypadku nie ma potrzeby dopisywania zer.

  Uwaga

Istnieją ułamki zwykłe, które możemy rozszerzyć lub skrócić tak, aby otrzymać w mianowniku 10, 100, 1000,... Jednak nie wszystkie ułamki można zamienić na równe im ułamki dziesiętne, to znaczy tak rozszerzyć lub skrócić, aby otrzymać ułamek o mianowniku 10, 100, 1000 itd.

Przykłady ułamków, które dają się rozszerzyć lub skrócić, tak aby otrzymać ułamek dziesiętny:
$$1/2= {1•5}/{2•5}=5/{10}= 0,5$$
$$3/{20}= {3•5}/{20•5}= {15}/{100}= 0,15$$
$${80}/{400}= {80÷4}/{400÷4}={20}/{100}= 2/{10}= 0,2$$

Nie można natomiast zamienić na ułamek dziesiętny ułamka $$1/3$$. Ułamka tego nie można skrócić ani rozszerzyć tak, aby w mianowniku pojawiła się liczba 10, 100, 1000 itd.

Pozycyjny system dziesiątkowy

System liczenia, którego używamy jest pozycyjny i dziesiątkowy. Wyjaśnijmy co to oznacza:

  • pozycyjny, ponieważ liczbę przedstawia się jako ciąg cyfr, a wartość poszczególnych cyfr zależy od miejsca (pozycji), jakie zajmuje ta cyfra,
  • dziesiątkowy, ponieważ liczby zapisujemy za pomocą dziesięciu znaków, zwanych cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Przykład (wyjaśniający pojęcie pozycyjnego systemu dziesiątkowego):

img01
 

Każda z cyfr użyta w powyższej liczbie tworzy określoną wartość, która jest uzależniona od miejsca (pozycji), jaką zajmuje ta cyfra w zapisie utworzonej liczby.

Jeśli użyjemy dokładnie tych samych cyfr, z których zbudowana jest powyższa liczba, ale użyjemy ich w innej kolejności to otrzymamy całkiem inną liczbę (np. 935287, 728395).

Przestawienie kolejności cyfr zmienia wartość liczby, dlatego nasz system liczenia jest pozycyjny (ponieważ miejsce cyfry w zapisie liczby nadaje wartość tej liczbie), natomiast używanie dziesięciu cyfr do zapisu liczby powoduje, że nazywamy go dziesiątkowym systemem.
 

Liczbę z powyższego przykładu możemy zapisać też w następujący sposób:
$$3•1+9•10+5•100+7•1000+8•10000+2•100000= 287 593$$
 

Przykład (czytanie zapisanych liczb w pozycyjnym systemie dziesiątkowym):
  • 22 500 - czytamy: dwadzieścia dwa i pół tysiąca lub dwadzieścia dwa tysiące pięćset,
  • 1 675 241 - czytamy: milion sześćset siedemdziesiąt pięć tysięcy dwieście czterdzieści jeden.

  Ciekawostka

Pozycyjny system dziesiątkowy pochodzi prawdopodobnie z Indii (znany jest napis z 683 roku zawierający zapis liczby w systemie pozycyjnym z użyciem zera). Za pośrednictwem Arabów system ten oraz zero dotarły do Europy (stąd nazwa cyfry arabskie) i obecnie jest powszechnie używanym systemem liczbowym.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom