Reformacja w XVI w. - Zadanie Mapa: Historia II - strona 46
Historia
Wybierz książkę
Reformacja w XVI w. 4.5 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Historia

Reformacja w XVI w.

Mapa
 Zadanie

1. Wymień państwa, w których luteranizm i kalwinizm stały się religiami dominującymi.

- Państwa, w których luteranizm i kalwinizm stały się religiami dominującymi to:

  • Szwajcaria (kalwini);
  • Szkocja (kalwini);
  • Państwa niemieckie (luteranie);
Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
komentarz do rozwiązania undefined
Antek

22 lutego 2018
dzieki :)
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Jacek Chachaj, Janusz Drob, Leszek Wojciechowski
Wydawnictwo: Nowa Era/PWN
Rok wydania:
Autor rozwiązania
user profile

Paulina

74782

Nauczyciel

Wiedza
Prostopadłościan i sześcian

Prostopadłościan to figura przestrzenna, której kształt przypomina pudełko lub akwarium.

Prostopadłościan

  • Każda ściana prostopadłościanu jest prostokątem.

  • Każdy prostopadłościan ma 6 ścian, 8 wierzchołków i 12 krawędzi.

  • Dwie ściany mające wspólną krawędź nazywamy prostopadłymi.

  • Dwie ściany, które nie mają wspólnej krawędzi, nazywamy równoległymi.

  • Każda ściana jest prostopadła do czterech ścian oraz równoległa do jednej ściany.


Z każdego wierzchołka wychodzą trzy krawędzie – jedną nazywamy długością, drugą – szerokością, trzecią – wysokością prostopadłościanu i oznaczamy je odpowiednio literami a, b, c.

Długości tych krawędzi nazywamy wymiarami prostopadłościanu.

a – długość prostopadłościanu, b – szerokość prostopadłościanu, c - wysokość prostopadłościanu.


Prostopadłościan, którego wszystkie ściany są jednakowymi kwadratami nazywamy sześcianem.

Wszystkie krawędzie sześcianu mają jednakową długość.

kwadrat

a - długość krawędzi sześcianu

Jednostki pola

Jednostki pola służą do określenia pola danej figury, mówią nam ile maksymalnie kwadratów jednostkowych mieści się wewnątrz danej figury.

Jednostką pola może być dowolny kwadrat, jednak najczęściej używane są poniżej przedstawione jednostki pola, które ułatwiają przekazywanie informacji o polach figur:

  • $1 mm^2$ (milimetr kwadratowy) → pole kwadratu o boku 1 mm jest równe $1 mm^2$
  • $1 cm^2$ (centymetr kwadratowy) → pole kwadratu o boku 1 cm jest równe 1 $cm^2$
  • $1 dm^2$ (decymetr kwadratowy) → pole kwadratu o boku 1 dm jest równe $1 dm^2$
  • $1 m^2$(metr kwadratowy) → pole kwadratu o boku 1 m jest równe $1 m^2$
  • $1 km^2$ (kilometr kwadratowy) → pole kwadratu o boku 1 km jest równe $1 km^2$
  • $1 a$ (ar) → pole kwadratu o boku 10 m jest równe 100 $m^2$
  • $1 ha$ (hektar) → pole kwadratu o boku 100 m jest równe 10000 $m^2$

Zależności między jednostkami pola:

  • $1 cm^2 = 100 mm^2$ ; $1 mm^2 = 0,01 cm^2$
  • $1 dm^2 = 100 cm^2 = 10 000 mm^2$; $1 cm^2 = 0,01 dm^2$
  • $1 m^2 = 100 dm^2 = 10 000 cm^2 = 1 000 000 mm^2$; $1 dm^2 = 0,01 m^2$
  • $1 km^2 = 1 000 000 m^2 = 10 000 a = 100 ha$; $1 ha = 0,01 km^2$
  • $1 a = 100 m^2$; $1 m^2 = 0,01 a$
  • $1 ha = 100 a = 10 000 m^2$; $1 a = 0,01 ha$

Przykłady wyprowadzania powyższych zależności:

  • $1 cm^2 = 10mm•10mm=100$ $mm^2$
  • $1 cm^2 = 0,1dm•0,1dm=0,01$ $dm^2$
  • $1 km^2 = 1000m•1000m=1000000$ $m^2$
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2950ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA6111WIADOMOŚCI
NAPISALIŚCIE763KOMENTARZY
komentarze
... i7879razy podziękowaliście
Autorom