Historia

Napisz, na czym polega praca archeologa. 4.55 gwiazdek na podstawie 9 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Historia

Napisz, na czym polega praca archeologa.

5
 Zadanie
6
 Zadanie

7
 Zadanie

Archeolog to osoba, która przeprowadza wykopaliska na obszarach, na których istnieje możliwość zbadania życia prehistorycznego, odkrycia dawnych osad i miast. Archeolog dociera często do źródeł z czasów, gdy jeszcze nie istniało piśmiennictwo. W trakcie swych badań, archeolodzy odkrywają ruiny dawnych budowli, grobowce, stare naczynia, fragmenty odzieży, narzędzia, monety i broń. Ustalają, kiedy powstało dane znalezisko i do czego służyło. Poznają i opisują życie naszych przodków sprzed tysięcy lat.

DYSKUSJA
user profile image
Λουκάς Γιάννης Σβιετσκοβσκι

0

2016-12-04
Dziękuję!!!!
user profile image
Paulina

4863

2016-12-04
Cześć, od tego jesteśmy aby wam pomagać:) każdy zadowolony użytkownik to dla nas dodatkowa motywacja do pracy :) Pozdrawiamy!
user profile image
Gość

0

2017-01-06
Dzięki!!!!!!!!
user profile image
Szymon Pietrasz

0

2017-01-10
dzienks!!!!!!!!!!
Informacje
Wczoraj i dziś 4 2016
Autorzy: Tomasz Maćkowski
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Kolejność wykonywania działań

Przy rozwiązywaniu bardziej skomplikowanego działania, najważniejsze jest zachowanie kolejności wykonywania działań.

Kolejność wykonywania działań:

  1. Wykonywanie działań w nawiasach;

  2. Potęgowanie i pierwiastkowanie;

  3. Mnożenie i dzielenie (jeżeli w działaniu występuje dzielenie lub zarówno mnożenie, jak i dzielenie, to działania wykonujemy w kolejności w jakiej są zapisane od lewej do prawej strony).
    Przykład: $$16÷2•5=8•5=40$$;

  4. Dodawanie i odejmowanie (jeżeli w działaniu występuje odejmowanie lub zarówno dodawanie, jak i odejmowanie, to działania wykonujemy w kolejności w jakiej są zapisane od lewej strony do prawej).
    Przykład: $$24 - 6 +2 = 18 + 2 = 20$$.

Przykład:

$$(45-9•3)-4=(45-27)-4=18-4=14 $$
 
Dzielniki

Dzielnik liczby to taka liczba, przez którą dana liczba jest podzielna. Dzielnikiem każdej liczby naturalnej n (n>1) jest 1 oraz ona sama.

Inaczej mówiąc, dzielnikiem liczby naturalnej n nazywamy liczbę naturalną m, jeżeli liczba n podzieli się przez m, tzn. gdy istnieje taka liczba naturalna k, że $$n=k•m$$.

Przykład:

10 dzieli się przez 1, 2, 5 i 10, z tego wynika, że dzielnikami liczby 10 są liczby 1, 2, 5 i 10.

Możemy też powiedzieć, że:

  • 1 jest dzielnikiem 10 bo 10=10•1
  • 2 jest dzielnikiem 10 bo 10=5•2
  • 5 jest dzielnikiem 10 bo 10=2•5
  • 10 jest dzielnikiem 10 bo 10=1•10


Jeżeli liczba naturalna m jest dzielnikiem liczby n, to liczba n jest wielokrotnością liczby m.

Przykład:
Liczba 2 jest dzielnikiem liczby 10, czyli liczba 10 jest wielokrotnością liczby 2.
Symboliczny zapis $$m∣n$$ oznacza, że m jest dzielnikiem liczby n (lub n jest wielokrotnością liczby m). Powyższy przykład możemy zapisać jako $$2|10$$ (czytaj: 2 jest dzielnikiem 10).


Dowolna liczba naturalna n, większa od 1 (n>1), która ma tylko dwa dzielniki: 1 oraz samą siebie (czyli liczbę n) nazywamy liczbą pierwszą. Liczbami pierwszymi są liczby: 2, 3, 5, 7, 11, 13, 17, 19, 23...

  Zapamiętaj

Liczba 1 nie jest liczbą pierwszą – bo ma tylko jeden dzielnik. Liczba 0 też nie jest liczbą pierwszą – bo ma nieskończenie wiele dzielników.

  Zapamiętaj

Liczbę niebędącą liczbą pierwszą, czyli posiadająca więcej niż dwa dzielniki, nazywamy liczbą złożoną. Liczbami złożonymi są: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18...

  Zapamiętaj

Liczby 1 i 0 nie są liczbami złożonymi.

  Ciekawostka

Liczba doskonała to liczba, która jest równa sumie wszystkich swoich dzielników mniejszych od niej. Dotychczas znaleziono tylko 46 liczb doskonałych. Przykładem liczby doskonałej jest 6.

Zobacz także
Udostępnij zadanie