Zapoznaj się z fragmentem tekstu dotyczącego - Zadanie 4: Śladami przeszłości 1 - strona 5
Historia
Wybierz książkę
Zapoznaj się z fragmentem tekstu dotyczącego 4.67 gwiazdek na podstawie 12 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Historia

Zapoznaj się z fragmentem tekstu dotyczącego

3
 Zadanie

4
 Zadanie

Oceń, czy poniższe zdania sią prawdziwe. Zaznacz "P" przy zdaniach prawdziwych, a "F" - przy fałszywych.

  • Praca historyka podobna jest do pracy detektywa - [P] - PRAWDA, [F].
Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
opinia do rozwiązania undefined
Kuba

10 lutego 2019
Dzięki :)
komentarz do odpowiedzi undefined
Edyta

28 września 2017
Dzięki za pomoc
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Tomasz Maćkowski, Katarzyna Panimasz
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Paulina

74752

Nauczyciel

Wiedza
Największy wspólny dzielnik (NWD)

Największy wspólny dzielnik (NWD) dwóch liczb naturalnych jest to największa liczba naturalna, która jest dzielnikiem każdej z tych liczb.

Przykłady:

  • Największy wspólny dzielnik liczb 6 i 9 to liczba 3.

    1. Wypiszmy dzielniki liczby 6: 1, 2, 3, 6.
    2. Wypiszmy dzielniki liczby 9: 1, 3, 9.
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 6 i 9. Jest to 3.

  • Największy wspólny dzielnik liczb 12 i 20 to liczba 4.

    1. Wypiszmy dzielniki liczby 12: 1, 2, 3, 4, 6, 12.
    2. Wypiszmy dzielniki liczby 20: 1, 2, 4, 5, 10, 20.
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 12 i 20. Jest to 4.


Największy wspólny dzielnik 
dwóch liczb można znaleźć także wykorzystując rozkład na czynniki pierwsze. 

Aby znaleźć NWD dwóch liczb należy: 

  1. Rozłożyć liczby na czynniki pierwsze. 

  2. Zaznaczyć wspólne dzielniki obu liczb. 

  3. Obliczyć iloczyn wspólnych czynników (zaznaczonych czynników).  

Przykład:

Kwadrat

W kwadracie: 

  • wszystkie boki mają jednakową długość

  • wszystkie kąty wewnętrzne są kątami prostymi (mają miary wynoszące 90°)

  • przekątne mają jednakowe długości, przecinają się w połowie i są prostopadłe

Wzór na pole kwadratu

`P=a*a=a^2` 

`a`  - długość boku kwadratu


Uwaga!

Każdy kwadrat jest prostokątem.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY3158ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA6780WIADOMOŚCI
NAPISALIŚCIE856KOMENTARZY
komentarze
... i8999razy podziękowaliście
Autorom