Historia

SPRAWDZIAN, Rozdział I, Uporządkuj w kolejności 4.3 gwiazdek na podstawie 10 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Historia

SPRAWDZIAN, Rozdział I, Uporządkuj w kolejności

1
 Zadanie

2
 Zadanie

3
 Zadanie
4
 Zadanie
5
 Zadanie

[A] wyprawa misyjna biskupa Wojciecha - 997 rok

[B] koronacja Bolesława Chrobrego - 1025 rok

[C] chrzest Mieszka I - 966 rok

[D] wizyta Ottona III w Gnieźnie - 1000 rok

[E] zawarcie przez Chrobrego pokoju z cesarzem - 1018 rok 

[F] objęcie tronu przez Mieszka I - 960 rok

Wydarzenia w kolejności chronologicznej: F, C, A, D, E, B

DYSKUSJA
Informacje
Wczoraj i dziś 5
Autorzy: Grzegorz Wojciechowski
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Liczby mieszane i ich zamiana na ułamek niewłaściwy
ulamek

Liczba mieszana jest to suma dwóch składników, z których jeden jest liczbą naturalną (składnik całkowity), a drugi ułamkiem zwykłym właściwym (składnik ułamkowy).

$$4 1/9= 4 + 1/9 $$ ← liczbę mieszana zapisujemy bez użycia znaku dodawania +.

Zamiana liczby mieszanej na ułamek niewłaściwy

Licznik tego ułamka otrzymujemy w następujący sposób: mianownik składnika ułamkowego mnożymy przez składnik całkowity i do tego iloczynu dodajemy licznik składnika ułamkowego. Mianownik natomiast jest równy mianownikowi składnika ułamkowego.

Przykład:

$$3 1/4= {3•4+1}/4= {13}/4$$
 
Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $$a⊥b$$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $$a∥b$$.
     

    proste-rownlegle
Zobacz także
Udostępnij zadanie