Historia

Wczoraj i dziś 5 (Podręcznik, Nowa Era)

Wyjaśnij, dlaczego barok bywa nazywany epoką 4.56 gwiazdek na podstawie 9 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Historia

Wyjaśnij, dlaczego barok bywa nazywany epoką

1
 Zadanie

2
 Zadanie
3
 Zadanie
4
 Zadanie

Barok bywa nazywany epoką pełną sprzeczności, ponieważ artyści tej epoki łączyli ze sobą często sprzeczne, pozornie niepasujące do siebie elementy. Sztukę oraz architekturę baroku cechowały nieregularne kształty oraz wymyślne ozdoby. Bogacto ozdób było widoczne nie tylko w architekturze oraz sztuce, ale również w strojach ówczesnych ludzi. Malowidła, budynki świeckie oraz kościoły musiały oszałamiać pięknem oraz przepychem. 

DYSKUSJA
user profile image
Gość

30 stycznia 2018
Dzięki za ściąge
user profile image
Daria

8 stycznia 2018
Dzieki za pomoc
Informacje
Wczoraj i dziś 5
Autorzy: Grzegorz Wojciechowski
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Paulina

26881

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Wyłączenie całości z ułamka niewłaściwego

Jeśli ułamek jest niewłaściwy (czyli jego mianownik jest równy lub mniejszy od licznika) to możemy wyłączyć z niego całość, tzn. dzielimy (być może zresztą) licznik przez mianownik (tzn. sprawdzamy ile razy mianownik „zmieści się” z liczniku) i otrzymujemy w ten sposób liczbę naturalną, będącą całością (tzw. składnik całkowity) oraz resztę, która jest ułamkiem właściwym (tzw. składnik ułamkowy).

Przykład: $$9/4 = 2 1/4$$

Opis powyższego przykładu: Dzielimy 9 przez 4, czyli sprawdzamy ile razy 4 zmieści się w 9. Liczba 4 zmieści się 2 razy w liczbie 9, czyli otrzymujemy 2 i resztę 1 (bo $$2•4= 8$$, czyli do 9 brakuje 1, i ona jest naszą resztą).

Zobacz także
Udostępnij zadanie