Historia

Po prostu historia. Zeszyt ćwiczeń zakres podstawowy (Zeszyt ćwiczeń, WSiP)

Uszereguj chronologicznie prezydentów Polski 4.29 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 1 Klasa
  3. Historia

Uszereguj chronologicznie prezydentów Polski

1
 Zadanie

2
 Zadanie

Bronisław Komorowski - 5 (6 VIII 2010 - 6 VIII 2015);

Aleksander Kwaśniewski - 3 (22 XII 1995 - 22 XII 2005);

Lech Kaczyński - 4 (23 XII 2005 - 10 IV 2010);

Lech Wałęsa - 2 (22 XII 1990 - 22 XII 1995);

Wojciech Jaruzelski - 1 (19 VII 1989 - 22 XII 1990);

DYSKUSJA
Informacje
Po prostu historia. Zeszyt ćwiczeń zakres podstawowy
Autorzy: Marcin Markowicz
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Paulina

20734

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Największy wspólny dzielnik (nwd)

Największy wspólny dzielnik (NWD) dwóch liczb naturalnych jest to największa liczba naturalna, która jest dzielnikiem każdej z tych liczb.

Przykłady:

  • Największy wspólny dzielnik liczb 6 i 9 to liczba 3.

    1. Wypiszmy dzielniki liczby 6: 1, 2, 3, 6;
    2. Wypiszmy dzielniki liczby 9: 1, 3, 9;
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 6 i 9. Jest to 3.
  • Największy wspólny dzielnik liczb 12 i 20 to liczba 4.

    1. Wypiszmy dzielniki liczby 12: 1, 2, 3, 4, 6, 12;
    2. Wypiszmy dzielniki liczby 20: 1, 2, 4, 5, 10, 20;
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 12 i 20. Jest to 4.
Oś liczbowa

Oś liczbowa to prosta, na której każdemu punktowi jest przypisana dana wartość liczbowa, zwana jego współrzędną.

Przykład:

osie liczbowe

Odcinek jednostkowy na tej osi to część prostej między -1 i 0.

Po prawej stronie od 0 znajduje się zbiór liczb nieujemnych, a po lewej zbiór liczb niedodatnich. Grot strzałki wskazuje, że w prawą stronę rosną wartości współrzędnych. Oznacza to, że wśród wybranych dwóch współrzędnych większą wartość ma ta, która leży po prawej stronie (względem drugiej współrzędnej).

Zobacz także
Udostępnij zadanie