Historia

Odszukaj w różnych źródłach informacje 4.38 gwiazdek na podstawie 8 opinii
  1. Liceum
  2. 1 Klasa
  3. Historia

Odszukaj w różnych źródłach informacje

1
 Zadanie

  • Bitwa pod Zadwórzem - 1920 r

Bitwa pod Zadwórzem – bitwa, która miała miejsce 17 sierpnia 1920 roku w czasie wojny polsko-bolszewickiej pomiędzy oddziałem 330 polskich Obrońców Lwowa pod dowództwem kpt. Bolesława Zajączkowskiego a siłami bolszewickiej Pierwszej Konnej Armii Siemiona Budionnego. Potyczka zbrojna rozegrała się na dalekim przedpolu Lwowa, ponad trzydzieści kilometrów od miasta, w pobliżu wsi Zadwórze (obecnie - terytorium Ukrainy). Celem obrońców było opóźnienie podejścia wojsk bolszewickich do Lwowa. Oddział Zajączkowskiego dzielnie odpierał ataki i nawet w momencie, kiedy zabrakło amunicji nie poddał się, żołnierze walczyli na kolby i bagnety. 

W walce poległo 318 polskich żołnierzy, kilku dostało się do sowieckiej niewoli. Kapitan Zajączkowski aby nie wpaść w ręce wroga wraz z kilkoma żołnierzami popełnił samobójstwo. Ostatecznie Budionny zrezygnował z kontynuowania walki o Lwów i zakończył marsz na zachód. Skierował swą armię na północ w celu wsparcia wojsk rosyjskich w rejonie Wieprza i Warszawy.

  • Bitwa pod Zadwórzem ze względu na heroizm Polaków nazywana jest "polskimi Termopilami".
DYSKUSJA
Informacje
Poznać przeszłość. Wiek XX. Zakres podstawowy.
Autorzy: Stanisław Roszak, Jarosław Kłaczkow
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Jednostki pola

Jednostki pola służą do określenia pola danej figury, mówią nam ile maksymalnie kwadratów jednostkowych mieści się wewnątrz danej figury.

Jednostką pola może być dowolny kwadrat, jednak najczęściej używane są poniżej przedstawione jednostki pola, które ułatwiają przekazywanie informacji o polach figur:

  • $$1 mm^2$$ (milimetr kwadratowy) → pole kwadratu o boku 1 mm jest równe $$1 mm^2$$
  • $$1 cm^2$$ (centymetr kwadratowy) → pole kwadratu o boku 1 cm jest równe 1 $$cm^2$$
  • $$1 dm^2$$ (decymetr kwadratowy) → pole kwadratu o boku 1 dm jest równe $$1 dm^2$$
  • $$1 m^2 $$(metr kwadratowy) → pole kwadratu o boku 1 m jest równe $$1 m^2$$
  • $$1 km^2$$ (kilometr kwadratowy) → pole kwadratu o boku 1 km jest równe $$1 km^2$$
  • $$1 a$$ (ar) → pole kwadratu o boku 10 m jest równe 100 $$m^2$$
  • $$1 ha$$ (hektar) → pole kwadratu o boku 100 m jest równe 10000 $$m^2$$

Zależności między jednostkami pola:

  • $$1 cm^2 = 100 mm$$; $$1 mm^2 = 0,01 cm^2$$
  • $$1 dm^2 = 100 cm^2 = 10 000 mm^2$$; $$1 cm^2 = 0,01 dm^2$$
  • $$1 m^2 = 100 dm^2 = 10 000 cm^2 = 1 000 000 mm^2$$; $$1 dm^2 = 0,01 m^2$$
  • $$1 km^2 = 1 000 000 m^2 = 10 000 a = 100 ha$$; $$1 ha = 0,01 km^2$$
  • $$1 a = 100 m^2$$; $$1 m^2 = 0,01 a$$
  • $$1 ha = 100 a = 10 000 m^2$$; $$1 a = 0,01 ha$$

Przykłady wyprowadzania powyższych zależności:

  • $$1 cm^2 = 10mm•10mm=100$$ $$mm^2$$
  • $$1 cm^2 = 0,1dm•0,1dm=0,01$$ $$dm^2$$
  • $$1 km^2 = 1000m•1000m=1000000$$ $$m^2$$
Zamiana ułamka dziesiętnego na zwykły

Licznikiem ułamka zwykłego jest liczba naturalna jaką utworzyłyby cyfry ułamka dziesiętnego, gdyby nie było przecinka, mianownikiem jest liczba zbudowana z cyfry 1 i tylu zer, ile cyfr po przecinku zawiera ułamek dziesiętny.

Przykłady:

  • $$0,25 = {25}/{100}$$ ← licznikiem ułamka zwykłego jest liczba 25 (ponieważ taką liczbę tworzą cyfry ułamka dziesiętnego bez przecinka), mianownikiem ułamka zwykłego jest liczba zbudowana z 1 oraz z dwóch zer, czyli liczba 100, ponieważ dwie cyfry stoją po przecinku,

  • $$4,305={4305}/{1000}$$ ← licznikiem ułamka zwykłego jest liczba 4305 (ponieważ taką liczbę tworzą cyfry ułamka dziesiętnego bez przecinka), mianownikiem ułamka zwykłego jest liczba zbudowana z 1 oraz z trzech zer, czyli liczba 1000, ponieważ trzy cyfry stoją po przecinku.

Zobacz także
Udostępnij zadanie