Historia

Walki na terenie byłej Jugosławii. 4.6 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 1 Klasa
  3. Historia

Walki na terenie byłej Jugosławii.

Praca z mapą
 Zadanie

1. Wskaż państwa, które powstały w wyniku rozpadu Jugosławii.

  • Słowenia;
  • Chorwacja;
  • Macedonia;
  • Bośnia i Hercegowina;
  • Serbia;

2. Przedstaw strukturę wyznaniową byłej Jugosławii.

Była Jugosławia była państwem wielowyznaniowym.

Około 2/3 terytorium byłej Jugosławii znajdowało się przez kilkaset lat w zasięgu imperium tureckiego, wpływów kultury bizantyjskiej i łacińskiej. Spowodowało to podział religijny Jugosławii na trzy wielkie wyznania: rzymsko - katolickie (dominowało w Słowenii i Chorwacji), prawosławne (przede wszystkim w Serbii i Macedonii) oraz islam (dominował w Bośni i Hercegowinie oraz Kosowie). 

DYSKUSJA
user avatar
Łukasz

22 maja 2018
dzięki!
klasa:
Informacje
Autorzy: Stanisław Roszak, Jarosław Kłaczkow
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326708565
Autor rozwiązania
user profile

Paulina

55005

Nauczyciel

Wiedza
Pozycyjny system dziesiątkowy

System liczenia, którego używamy jest pozycyjny i dziesiątkowy. Wyjaśnijmy co to oznacza:

  • pozycyjny, ponieważ liczbę przedstawia się jako ciąg cyfr, a wartość poszczególnych cyfr zależy od miejsca (pozycji), jakie zajmuje ta cyfra,
  • dziesiątkowy, ponieważ liczby zapisujemy za pomocą dziesięciu znaków, zwanych cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Przykład (wyjaśniający pojęcie pozycyjnego systemu dziesiątkowego):

img01
 

Każda z cyfr użyta w powyższej liczbie tworzy określoną wartość, która jest uzależniona od miejsca (pozycji), jaką zajmuje ta cyfra w zapisie utworzonej liczby.

Jeśli użyjemy dokładnie tych samych cyfr, z których zbudowana jest powyższa liczba, ale użyjemy ich w innej kolejności to otrzymamy całkiem inną liczbę (np. 935287, 728395).

Przestawienie kolejności cyfr zmienia wartość liczby, dlatego nasz system liczenia jest pozycyjny (ponieważ miejsce cyfry w zapisie liczby nadaje wartość tej liczbie), natomiast używanie dziesięciu cyfr do zapisu liczby powoduje, że nazywamy go dziesiątkowym systemem.
 

Liczbę z powyższego przykładu możemy zapisać też w następujący sposób:
$$3•1+9•10+5•100+7•1000+8•10000+2•100000= 287 593$$
 

Przykład (czytanie zapisanych liczb w pozycyjnym systemie dziesiątkowym):
  • 22 500 - czytamy: dwadzieścia dwa i pół tysiąca lub dwadzieścia dwa tysiące pięćset,
  • 1 675 241 - czytamy: milion sześćset siedemdziesiąt pięć tysięcy dwieście czterdzieści jeden.

  Ciekawostka

Pozycyjny system dziesiątkowy pochodzi prawdopodobnie z Indii (znany jest napis z 683 roku zawierający zapis liczby w systemie pozycyjnym z użyciem zera). Za pośrednictwem Arabów system ten oraz zero dotarły do Europy (stąd nazwa cyfry arabskie) i obecnie jest powszechnie używanym systemem liczbowym.

Dzielenie ułamków dziesiętnych przez 10, 100, 1000...

Aby podzielić ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w lewo o tyle miejsc ile jest zer w liczbie przez którą dzielimy (czyli w 10, 100, 1000 itd.)

Przykłady:

  • $$0,34÷10= 0,034$$ ← przesuwamy przecinek o jedno miejsce w lewo
  • $$311,25÷100= 3,1125$$ ← przesuwamy przecinek o dwa miejsca w lewo
  • $$53÷1000= 0,053$$ ← przesuwamy przecinek o trzy miejsca w lewo
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom