Historia

Jedyna duszy i serca pociecho, najśliczniejsza 4.6 gwiazdek na podstawie 15 opinii
  1. Szkoła podstawowa
  2. 5 Klasa
  3. Historia

Jedyna duszy i serca pociecho, najśliczniejsza

Tekst źródłowy
 Zadanie

4
 Zadanie
5
 Zadanie
6
 Zadanie

Co, zdaniem króla, świadczy o wielkim zwycięstwie Polaków?

O wielkim zwycięstwie Polaków w wiktorii wiedeńskiej świadczą zdobyte w czasie bitwy łupy oraz wielka liczba zabitych wojowników tureckich. Jan III Sobieski w liście do swojej najukochańszej żony Marysieńki pisał: "Działa wszystkie, obóz wszystek, dostatki nieoszacowane dostały się w ręce nasze. Nieprzyjaciel, zasławszy trupem pola i obóz, ucieka w konfuzji". Polski monarcha zawdzięcza zwycięstwo Bogu. 

DYSKUSJA
user profile image
ewelinakowalska

0

2017-04-10
Dlaczego jan3 sobieski wyruszył pod wiedeń
user profile image
Paulina

9648

2017-04-11
@ewelinakowalska Cześć, to nie jest pytanie do tego zadania . Pozdrawiamy!
user profile image
Gość

0

2017-10-23
dzięki!!!
Informacje
Historia i społeczeństwo 5. Wehikuł czasu
Autorzy: Tomasz Małkowski
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Porównywanie ułamków dziesiętnych

Aby ustalić, który z dwóch ułamków dziesiętnych jest większy, wystarczy porównać kolejno rzędy, zaczynając od najwyższego. Oznacza to, że porównujemy kolejno cyfry z których zbudowany jest ułamek dziesiętny, czyli zaczynamy od cyfr części całkowitej, a później przechodzimy to porównywania cyfr części dziesiętnych.

W praktyce porównywanie ułamków dziesiętnych odbywa się następująco:
  • Najpierw porównujemy części całkowite, jeżeli nie są równe, to mniejszy jest ułamek o mniejszej części całkowitej;

  • Jeżeli obie części całkowite są równe, to porównujemy ich części dziesiętne. Jeżeli części dziesiętne nie są równe, to mniejszy jest ułamek o mniejszej części dziesiętnej;

  • Gdy części dziesiętne są równe, to porównujemy ich części setne, tysięczne itd., aż do uzyskania odpowiedzi.

  Zapamiętaj

Gdy na końcu ułamka dziesiętnego dopisujemy lub pomijamy zero, to jego wartość się nie zmienia.

Przykłady:
$$0,34=0,340=0,3400=0,34000=...$$
$$0,5600=0,560=0,56$$

W związku z powyższą uwagą, jeżeli w czasie porównywania ułamków w którymś zabraknie cyfr po przecinku, to należy dopisać odpowiednią liczbę zer.
 

Przykład: Porównajmy ułamki 5,25 i 5,23.
Przed porównywaniem ułamków wygodnie jest zapisać porównywane liczby jedna pod drugą, ale tak by zgadzały się rzędy, czyli przecinek pod przecinkiem.

porownanie1
Widzimy, że w porównywanych ułamkach części jedności są takie same, części dziesiętne także są równe, natomiast w rzędzie części setnych 5>3, zatem ułamek 5,25 jest większy od 5,23. Zatem 5,25>5,23.

Przykład: Porównajmy ułamki 0,8 i 0,81.
Zapisujemy ułamki jeden pod drugim, tak aby zgadzały się rzędy, czyli przecinek pod przecinkiem. Ponadto dopisujemy 0 w ułamku 0,8.

porownanie2

Widzimy, że w porównywanych ułamkach części jedności są takie same, części dziesiętne także są równe, natomiast w rzędzie części setnych 0<1, zatem ułamek 0,81 jest większy od 0,8. Zatem 0,81>0,8.

Siatka prostopadłościanu

Po rozcięciu powierzchni prostopadłościanu wzdłuż kilku krawędzi i rozłożeniu go na powierzchnię płaską powstanie jego siatka. Jest to wielokąt złożony z prostokątów, czyli ścian graniastosłupa. Ten sam prostopadłościan może mieć kilka siatek.

Siatka prosopadłościanu
Zobacz także
Udostępnij zadanie