Historia

Bliżej historii 3 2013 (Podręcznik, WSiP)

Wymień w punktach cele polityki Bismarcka 4.57 gwiazdek na podstawie 14 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Historia

Wymień w punktach cele polityki Bismarcka

1
 Zadanie

2
 Zadanie

Cele polityki Bismarcka, dążącego do zjednoczenia Niemiec:

  • Wzmocnienie gospodarcze i polityczne Prus;
  • Rozbudowa armii oraz utworzenie sprawnie funkcjonującego rządu;
  • Likwidacja Związku Niemieckiego utworzonego na kongresie wiedeńskiem;
  • Rozbicie Austrii i utworzenie państwa federalnego z dominującą pozycją Prus;
  •  Bismarck uważał, iż zjednoczenie Niemiec powinno nastąpić dzięki silnej więzi narodowej, a także przy pomocy sprawnej dyplomacji oraz działań militarnych. Według kanclerza zjednoczenie miało odbyć się "krwią i żelazem";
  • Rozbicie Francji - przejęcie Alzacji i Lotaryngii;

 

DYSKUSJA
user profile image
Gość

21-11-2017
thx
user profile image
Antoni

27-10-2017
Dzięki :)
user profile image
antonina

19-10-2017
Dzięki za pomoc!
Informacje
Bliżej historii 3 2013
Autorzy: Igor Kąkolewski,Anita Plumińska-Mieloch,Krzysztof Kowalewski
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Paulina

20957

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Najmniejsza wspólna wielokrotność (nww)

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Przykłady:

  • Najmniejszą wspólną wielokrotnością liczb 3 i 5 jest: 15.
    1. Wypiszmy wielokrotności liczby 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...;
    2. Wypiszmy wielokrotności liczby 5: 5, 10, 15, 20, 25, 30, 35, ...;
    3. Wśród wielokrotności liczby 3 i liczby 5 szukamy najmniejszej liczby, która jest zarówno wielokrotnością 3 i 5. Jest to 15.
  • Najmniejszą wspólną wielokrotnością liczb 4 i 6 jest: 12.
    1. Wypiszmy wielokrotności liczby 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...;
    2. Wypiszmy wielokrotności liczby 6: 6, 12, 18, 24, 30, 36, 42, 48, ...;
    3. Wśród wielokrotności wyżej wypisanych szukamy najmniejszej liczby, która jest zarówno wielokrotnością 4 i 6, widzimy że jest to 12.
Zobacz także
Udostępnij zadanie