Historia

Europa Zachodnia w XIV i XV w. 4.57 gwiazdek na podstawie 14 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Historia

Europa Zachodnia w XIV i XV w.

1
 Zadanie
2
 Zadanie

Notatka z lakcji
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
user avatar
Lilianna

4 stycznia 2018
dzięki :):)
user avatar
Karolina

19 grudnia 2017
Dzieki za pomoc!
klasa:
Informacje
Autorzy: Wojciechowski Grzegorz
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Paulina

56156

Nauczyciel

Wiedza
Kwadrat

W kwadracie: 

  • wszystkie boki mają jednakową długość

  • wszystkie kąty wewnętrzne są kątami prostymi (mają miary wynoszące 90°)

  • przekątne mają jednakowe długości, przecinają się w połowie i są prostopadłe

Wzór na pole kwadratu

`P=a*a=a^2` 

`a`  - długość boku kwadratu


Uwaga!

Każdy kwadrat jest prostokątem.

Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom