Historia

Porównaj wyposażenie bojowe husarza 4.57 gwiazdek na podstawie 7 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Historia

Porównaj wyposażenie bojowe husarza

1
 Zadanie

2
 Zadanie
  • Husaria stanowiła symbol wspaniałych zwycięstw odnoszonych przez wojska Rzeczypospolitej w XVII wieku. Były to oddziały ciężkiej kawalerii, które dzięki sile natarcia przełamywały szyki nieprzyjaciela. Swoją przewagę polscy jeźdźcy zawdzięczali głównie doskonałemu wyszkoleniu, taktyce walki i umiejętnościom dowódców. Od czasów Stefana Batorego i Zygmunta III Wazy zmieniono rodzaj uzbrojenia husarzy, którzy zostali wyposażeni w kopie, szable, koncerze i noszone przy siodłach pistolety. Dla ochrony jeźdźców używano szyszaków i półzbroi. Od przełomu XVI i XVII wieku dodatkowym wyposażeniem stały się skrzydła husarskie, mocowane do tylnej części siodła bądź na napleczniku zbroi. Ten element ekwipunku husarza służył do płoszenia koni, osłaniał także przed rzucanymi przez Tatarów arkanami. 
  • Z kolei uzbrojenie rycerzy walczących pod Grunwaldem stanowiły: miecze, zbroje płytowe wraz z przyłbicami, kopie oraz tarcze. Siły polskie posługiwały się w walce w wygodnymi w użyciu mieczami jednoręcznymi. W przeciwieństwie do większych mieczy - dwuręcznych - pozwalały one rycerzowi na trzymanie w drugiej dłoni tarczy. Zbroja polskiego rycerza składała się najczęściej z napierśnika i naplecznika, połączonych zawiasami oraz spiętych klamrami, a także z osłon, które chroniły ręce i nogi. Kopie wykorzystywano podczas szarży. Ta broń miała zazwyczaj od 3,5 do 4,5 m długości. Po złamaniu kopii przez nieprzyjaciela, rycerze walczyli za pomocą mieczy i toporów. 
DYSKUSJA
klasa:
Informacje
Autorzy: Stanisław Roszak
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Paulina

68082

Nauczyciel

Wiedza
Proste, odcinki i kąty

Najprostszymi figurami geometrycznymi są: punkt, prosta, półprosta i odcinek.

  1. Punkt – jest to jedno z pojęć pierwotnych, co oznacza że nie posiada formalnej definicji, jednak możemy wyobrazić go sobie jako nieskończenie małą kropkę lub ślad po wbitej cienkiej szpilce. Punkty oznaczamy wielkimi literami alfabetu.

    punkt
     
  2. Prosta – jest to jedno z pojęć pierwotnych, co oznacza że nie posiada formalnej definicji, jednak możemy wyobrazić ją sobie jako niezwykle długą i cienką, naprężona nić lub ślad zgięcia wielkiej kartki papieru.

    Możemy też powiedzieć, że prosta jest figurą geometryczną złożoną z nieskończenie wielu punktów. Prosta jest nieograniczona, czyli nie ma ani początku ani końca. Proste oznaczamy małymi literami alfabetu.
     

    prosta

    Jeżeli punkt A należy do prostej a, to mówimy, że prosta a przechodzi przez punkt A.

    prosta-punkty

    $$A∈a$$ (czyt.: punkt A należy do prostej a); $$B∈a$$; $$C∉a$$ (czyt.: punkt C nie należy do prostej a); $$D∉a$$

    Przez jeden punkt można poprowadzić nieskończenie wiele prostych.

    prosta-przechodzaca-przez-punkty

    Przez dwa różne punkty A i B można poprowadzić tylko jedną prostą. Prostą przechodzącą przez dwa różne punkty A i B oznaczamy prostą AB.
     
  3. Półprosta – jedna z dwóch części prostej, na które punkt dzieli tę prostą, wraz z tym punktem. Inaczej mówiąc półprosta to część prostej ograniczona z jednej strony punktem, który jest jej początkiem.
     

    polprosta
     
  4. Odcinek – Jeżeli dane są dwa różne punkty A i B należące do prostej, to zbiór złożony z punktów A i B oraz z tych punktów prostej AB, które są zawarte między punktami A i B, nazywamy odcinkiem AB.


    odcinekab

    Punkty A i B nazywamy nazywamy końcami odcinka. Końce odcinków oznaczamy wielkimi literami alfabetu,natomiast odcinek możemy oznaczać małymi literami.
     
  5. Łamana – jest to figura geometryczna, będąca sumą skończonej liczby odcinków. Inaczej mówiąc, łamana to figura zbudowana z odcinków w taki sposób, że koniec jednego odcinka jest początkiem następnego odcinka.


    lamana
     

    Odcinki, z których składa się łamana nazywamy bokami łamanej, a ich końce wierzchołkami łamanej.
     

    • Jeśli pierwszy wierzchołek łamanej pokrywa się z ostatnim, to łamaną nazywamy zamkniętą.

      lamana-zamknieta
       
    • Jeśli pierwszy wierzchołek nie pokrywa się z ostatnim, to łamana nazywamy otwartą.

      lamana-otwarta
 
Dzielenie ułamków dziesiętnych przez 10, 100, 1000...

Aby podzielić ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w lewo o tyle miejsc ile jest zer w liczbie przez którą dzielimy (czyli w 10, 100, 1000 itd.)

Przykłady:

  • $$0,34÷10= 0,034$$ ← przesuwamy przecinek o jedno miejsce w lewo
  • $$311,25÷100= 3,1125$$ ← przesuwamy przecinek o dwa miejsca w lewo
  • $$53÷1000= 0,053$$ ← przesuwamy przecinek o trzy miejsca w lewo
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom