Historia

Porównaj wyposażenie bojowe husarza 4.57 gwiazdek na podstawie 7 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Historia

Porównaj wyposażenie bojowe husarza

1
 Zadanie

2
 Zadanie
  • Husaria stanowiła symbol wspaniałych zwycięstw odnoszonych przez wojska Rzeczypospolitej w XVII wieku. Były to oddziały ciężkiej kawalerii, które dzięki sile natarcia przełamywały szyki nieprzyjaciela. Swoją przewagę polscy jeźdźcy zawdzięczali głównie doskonałemu wyszkoleniu, taktyce walki i umiejętnościom dowódców. Od czasów Stefana Batorego i Zygmunta III Wazy zmieniono rodzaj uzbrojenia husarzy, którzy zostali wyposażeni w kopie, szable, koncerze i noszone przy siodłach pistolety. Dla ochrony jeźdźców używano szyszaków i półzbroi. Od przełomu XVI i XVII wieku dodatkowym wyposażeniem stały się skrzydła husarskie, mocowane do tylnej części siodła bądź na napleczniku zbroi. Ten element ekwipunku husarza służył do płoszenia koni, osłaniał także przed rzucanymi przez Tatarów arkanami. 
  • Z kolei uzbrojenie rycerzy walczących pod Grunwaldem stanowiły: miecze, zbroje płytowe wraz z przyłbicami, kopie oraz tarcze. Siły polskie posługiwały się w walce w wygodnymi w użyciu mieczami jednoręcznymi. W przeciwieństwie do większych mieczy - dwuręcznych - pozwalały one rycerzowi na trzymanie w drugiej dłoni tarczy. Zbroja polskiego rycerza składała się najczęściej z napierśnika i naplecznika, połączonych zawiasami oraz spiętych klamrami, a także z osłon, które chroniły ręce i nogi. Kopie wykorzystywano podczas szarży. Ta broń miała zazwyczaj od 3,5 do 4,5 m długości. Po złamaniu kopii przez nieprzyjaciela, rycerze walczyli za pomocą mieczy i toporów. 
DYSKUSJA
klasa:
Informacje
Autorzy: Stanisław Roszak
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Paulina

54581

Nauczyciel

Wiedza
Pozycyjny system dziesiątkowy

System liczenia, którego używamy jest pozycyjny i dziesiątkowy. Wyjaśnijmy co to oznacza:

  • pozycyjny, ponieważ liczbę przedstawia się jako ciąg cyfr, a wartość poszczególnych cyfr zależy od miejsca (pozycji), jakie zajmuje ta cyfra,
  • dziesiątkowy, ponieważ liczby zapisujemy za pomocą dziesięciu znaków, zwanych cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Przykład (wyjaśniający pojęcie pozycyjnego systemu dziesiątkowego):

img01
 

Każda z cyfr użyta w powyższej liczbie tworzy określoną wartość, która jest uzależniona od miejsca (pozycji), jaką zajmuje ta cyfra w zapisie utworzonej liczby.

Jeśli użyjemy dokładnie tych samych cyfr, z których zbudowana jest powyższa liczba, ale użyjemy ich w innej kolejności to otrzymamy całkiem inną liczbę (np. 935287, 728395).

Przestawienie kolejności cyfr zmienia wartość liczby, dlatego nasz system liczenia jest pozycyjny (ponieważ miejsce cyfry w zapisie liczby nadaje wartość tej liczbie), natomiast używanie dziesięciu cyfr do zapisu liczby powoduje, że nazywamy go dziesiątkowym systemem.
 

Liczbę z powyższego przykładu możemy zapisać też w następujący sposób:
$$3•1+9•10+5•100+7•1000+8•10000+2•100000= 287 593$$
 

Przykład (czytanie zapisanych liczb w pozycyjnym systemie dziesiątkowym):
  • 22 500 - czytamy: dwadzieścia dwa i pół tysiąca lub dwadzieścia dwa tysiące pięćset,
  • 1 675 241 - czytamy: milion sześćset siedemdziesiąt pięć tysięcy dwieście czterdzieści jeden.

  Ciekawostka

Pozycyjny system dziesiątkowy pochodzi prawdopodobnie z Indii (znany jest napis z 683 roku zawierający zapis liczby w systemie pozycyjnym z użyciem zera). Za pośrednictwem Arabów system ten oraz zero dotarły do Europy (stąd nazwa cyfry arabskie) i obecnie jest powszechnie używanym systemem liczbowym.

Wzajemne położenie odcinków

Dwa odcinki mogą być względem siebie prostopadłe lub równoległe.

  1. Odcinki prostopadłe – odcinki zawarte w prostych prostopadłych – symboliczny zapis $$AB⊥CD$$.

    odcinkiprostopadle
     
  2. Odcinki równoległe – odcinki zawarte w prostych równoległych – symboliczny zapis $$AB∥CD$$.

    odicnkirownolegle
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom