Historia

Wczoraj i dziś 6. Zeszyt ucznia cz. 2 (Zeszyt ćwiczeń, Nowa Era)

Wyjaśnij znaczenie terminu kanonizacja. 4.55 gwiazdek na podstawie 29 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Historia

Wyjaśnij znaczenie terminu kanonizacja.

1
 Zadanie
2
 Zadanie

3
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Kanonizacja - w Kościele katolickim lub prawosławnym termin ten oznacza uznanie osoby zmarłej za świętą.

Kanonizacja papieża Polaka - Jana Pawła II odbyła się 27 kwietnia 2014 roku w Watykanie na Placu Świętego Piotra, podczas której dwaj błogosławieni papieże – Jan XXIII oraz Jan Paweł II – zostali ogłoszeni świętymi Kościoła katolickiego.

DYSKUSJA
Informacje
Wczoraj i dziś 6. Zeszyt ucznia cz. 2
Autorzy: Tomasz Maćkowski
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Paulina

21367

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Mnożenie ułamków dziesiętnych przez 10, 100, 1000...

Aby pomnożyć ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w prawo o tyle miejsc ile jest zer w liczbie przez którą mnożymy (czyli w 10, 100, 1000 itd.).

Przykłady:

  • $$0,253•10= 2,53$$ ← przesuwamy przecinek o jedno miejsce w prawo
  • $$3,007•100= 300,7$$ ← przesuwamy przecinek o dwa miejsca w prawo
  • $$0,024•1000= 24$$ ← przesuwamy przecinek o trzy miejsca w prawo
Porównywanie ułamków

Porównywanie dwóch ułamków polega na stwierdzeniu, który z nich jest mniejszy, który większy.

  • Porównywanie ułamków o takich samych mianownikach
    Jeżeli ułamki zwykłe mają takie same mianowniki, to ten jest większy, który ma większy licznik

    Przykład:

    $$3/8$$ < $$5/8$$
     
  • Porównywanie ułamków o takich samych licznikach
    Jeżeli ułamki zwykłe mają takie same liczniki, to ten jest większy, który ma mniejszy mianownik.

    Przykład:

    $$4/5$$ > $$4/9$$
Zobacz także
Udostępnij zadanie