Historia

Wczoraj i dziś 6. Zeszyt ucznia cz. 2 (Zeszyt ćwiczeń, Nowa Era)

Dlaczego - Twoim zdaniem - okupanci dążyli 4.04 gwiazdek na podstawie 68 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Historia

Dlaczego - Twoim zdaniem - okupanci dążyli

3
 Zadanie
4
 Zadanie

5
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.
To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
user profile image
lol2002

22-03-2017
za dlugie
user profile image
Paulina

10633

23-03-2017
@lol2002 Cześć, powyższe zadanie zawiera bardzo szczegółową odpowiedź na pytanie podane w poleceniu. Możesz je skrócić, bądź zmodyfikować według własnego uznania. Pozdrawiamy!
user profile image
Ola Bałdyga

02-03-2017
ale w zeszycie ćwiczeń jest tylko 6 linijek :(
user profile image
Paulina

10633

03-03-2017
@Ola Bałdyga Cześć, zawsze możesz zrobić krótsza własną notatkę, wzorując się na naszej odpowiedzi. Wtedy jest pewność że nikt nie będzie miał tak samo jak ty. Pozdrawiamy!
user profile image
Scary

15-03-2017
@Ola Bałdyga doklej kartkę do ćwiczenia z dalszym ciągiem
user profile image
izakuberska

05-02-2017
Dzieki :)
user profile image
Ania Górzyńska

30-01-2017
a czemu te zadania są premium
user profile image
Paulina

10633

31-01-2017
@Ania Górzyńska Cześć, gdyby nie zadania premium to strona musiałaby zostać zamknięta :(. To jedyny sposób, by zdobyć pieniądze niezbędne na utrzymanie i rozwój strony. Musimy zapłacić nauczycielom za robienie zadań, za książki, s...
Informacje
Wczoraj i dziś 6. Zeszyt ucznia cz. 2
Autorzy: Tomasz Maćkowski
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Paulina

10604

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Równość ułamków

Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.

Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.

  • Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:

      $$3/5=9/{15}={27}/{45}=...$$
       
  • Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:

      $$8/{16}=4/8=2/4=1/2$$ 
 
Porównywanie ułamków

Porównywanie dwóch ułamków polega na stwierdzeniu, który z nich jest mniejszy, który większy.

  • Porównywanie ułamków o takich samych mianownikach
    Jeżeli ułamki zwykłe mają takie same mianowniki, to ten jest większy, który ma większy licznik

    Przykład:

    $$3/8$$ < $$5/8$$
     
  • Porównywanie ułamków o takich samych licznikach
    Jeżeli ułamki zwykłe mają takie same liczniki, to ten jest większy, który ma mniejszy mianownik.

    Przykład:

    $$4/5$$ > $$4/9$$
Zobacz także
Udostępnij zadanie