Historia

Który z problemów współczesnego świata uważasz 4.67 gwiazdek na podstawie 9 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Historia
UWAGA! Oglądasz starą wersję książki. *Kilknij tutaj aby zobaczyć nową.*

Uważam, iż najważniejszym problemem współczesnego świata jest głód oraz brak wody pitnej, doskwierający szczególnie państwom Trzeciego Świata.

Sposoby rozwiązania powyższego problemu:

  • Wprowadzenie nowych metod gospodarowania zasobami przyrody;
  • Unowocześnienie rolnictwa;
  • Zwiększenie produkcji żywności w krajach objętych głodem;
  • Finansowanie budowy kolejnych studni w Afryce;
  • Rozsądny podział ziem uprawych, sprawiedliwe rozdysponowanie dóbr;
  • Zwiększenie hodowli zwierząt;
  • Udzielenie kredytów krajom Trzeciego Świata, które pozwoliłyby na podniesienie efektywności i wydajności rolnictwa, a co za tym idzie, zwiększyłyby ilość otrzymanych polnów;

 

DYSKUSJA
Informacje
Wczoraj i dziś 6
Autorzy: Grzegorz Wojciechowski
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Prostopadłościan

Prostopadłościan to figura przestrzenna, której kształt przypomina pudełko lub akwarium.

Prostopadłościan

  • Każda ściana prostopadłościanu jest prostokątem.
  • Każdy prostopadłościan ma 6 ścian - 4 ściany boczne i 2 podstawy, 8 wierzchołków i 12 krawędzi.
  • Dwie ściany mające wspólną krawędź nazywamy prostopadłymi.
  • Dwie ściany, które nie mają wspólnej krawędzi, nazywamy równoległymi.
  • Każda ściana jest prostopadła do czterech ścian oraz równoległa do jednej ściany.

Z każdego wierzchołka wychodzą trzy krawędzie – jedną nazywamy długością, drugą – szerokością, trzecią – wysokością prostopadłościanu i oznaczamy je odpowiednio literami a, b, c. Długości tych krawędzi nazywamy wymiarami prostopadłościanu.

Prostopadłościan - długości

a – długość prostopadłościanu, b – szerokość prostopadłościanu, c - wysokość prostopadłościanu.

Prostopadłościan, którego wszystkie ściany są kwadratami nazywamy sześcianem.Wszystkie krawędzie sześcianu mają jednakową długość.

kwadrat
Równość ułamków

Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.

Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.

  • Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:

      $$3/5=9/{15}={27}/{45}=...$$
       
  • Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:

      $$8/{16}=4/8=2/4=1/2$$ 
 
Zobacz także
Udostępnij zadanie