Wskaż zjawiska, które zachodzą... 4.23 gwiazdek na podstawie 13 opinii
  1. Szkoła podstawowa
  2. 8 Klasa
  3. Fizyka

Wskaż zjawiska, które zachodzą...

1
 Zadanie

2
 Zadanie
3
 Zadanie

Zjawiska, które zachodzą w wyniku oddziaływania elektrostatycznego, to: 

B. Grzebień przyciąga rozczesywane włosy,

C. Zgarniane ze stołu kawałki styropianu przyczepiają się do dłoni. 

DYSKUSJA
komentarz do odpowiedzi Wskaż zjawiska, które zachodzą... - Zadanie 1: Spotkania z fizyką 8 - strona 34
Alina Kuczera

3

24 października 2018
dlaczego nie ma cw 7 str 31
opinia do odpowiedzi Wskaż zjawiska, które zachodzą... - Zadanie 1: Spotkania z fizyką 8 - strona 34
Odrabiamy.pl

1022

25 października 2018

@Alina Kuczera Cześć, czy na pewno przeglądasz dobry podręcznik? Na stronie 31 w Spotkania z fizyką 8 nie ma zadań do rozwiązania. 

opinia do rozwiązania Wskaż zjawiska, które zachodzą... - Zadanie 1: Spotkania z fizyką 8 - strona 34
Marcelina

10 grudnia 2018
Dziękuję!!!!
opinia do rozwiązania Wskaż zjawiska, które zachodzą... - Zadanie 1: Spotkania z fizyką 8 - strona 34
martynka.marcinik

3 października 2018
Dziękuję ❤️
opinia do odpowiedzi Wskaż zjawiska, które zachodzą... - Zadanie 1: Spotkania z fizyką 8 - strona 34
Renia

30 września 2018
dzięki :):)
opinia do rozwiązania Wskaż zjawiska, które zachodzą... - Zadanie 1: Spotkania z fizyką 8 - strona 34
Łukasz

8 września 2018
Dzięki za pomoc
klasa:
Informacje
Autorzy: Grażyna Francuz-Ornat, Teresa Kulawik, Maria Nowotny-Różańska
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326733048
Autor rozwiązania
user profile

Ola

19654

Nauczyciel

Wiedza
Dodawanie i odejmowanie

Działania arytmetyczne to dwuargumentowe działania, które dwóm danym liczbom przyporządkowują trzecią liczbę, czyli tzw. wynik działania. Zaliczamy do nich dodawanie, odejmowanie, mnożenie i dzielenie.

  1. Dodawanie to działanie przyporządkowujące dwóm liczbom a i b, liczbę c = a + b. Wynik dodawania nazywany jest sumą, a dodawane składnikami sumy.
     

    dodawanie liczb


    Składniki podczas dodawania można zamieniać miejscami, dlatego mówimy, że jest ono przemienne. Niekiedy łatwiej jest dodać dwa składniki, gdy skorzystamy z tej własności.
    Przykład: $$7 + 19 = 19 +7$$.

    Kiedy jednym ze składników sumy jest inna suma np. (4+8), to możemy zmienić położenie nawiasów (a nawet je pominąć), na przykład $$12 + (4 + 8) = (12 + 8) + 4 = 12 + 8 + 4$$
    Mówimy, że dodawanie jest łączne.

    Poniżej przedstawiamy przykład, gdy warto skorzystać z praw łączności i przemienności:
    $$12 + 3 + 11 + (7 + 8) + 9 = 12 + 8 +3 +7 + 11 + 9 = 20 + 10 + 20 = 50$$
     

  2. Odejmowanie
    Odjąć liczbę b od liczby a, tzn. znaleźć taką liczbę c, że a = b+ c.
    Przykład $$23 - 8 = 15$$, bo $$8 + 15 = 23$$.

    Odejmowane obiekty nazywane są odpowiednio odjemną i odjemnikiem, a wynik odejmowania różnicą.

    odejmowanie liczb

    Odejmowanie w przeciwieństwie do dodawania nie jest ani łączne, ani przemienne.
    np. $$15 - 7 ≠ 7 - 15$$ (gdzie symbol ≠ oznacza "nie równa się").
 
Skala i plan

Przy wykonywaniu rysunków niektórych przedmiotów lub sporządzaniu map, planów musimy zmniejszyć rzeczywiste wymiary przedmiotów, aby rysunki zmieściły się na kartce. Są też rzeczy niewidoczne dla oka, które obserwujemy za pomocą mikroskopu, wówczas rysunki przedstawiamy w powiększeniu.
W tym celu stosujemy pewną skalę. Skala określa, ile razy dany obiekt został pomniejszony lub powiększony. Rozróżniamy zatem skale zmniejszające i zwiększające.

Skala 1:2 („jeden do dwóch”) oznacza, że przedstawiony obiekt jest dwa razy mniejszy od rzeczywistego, czyli jego wymiary są dwa razy mniejsze od rzeczywistych.

Skala 2:1 („dwa do jednego”) oznacza, że przedstawiony obiekt jest dwa razy większy od rzeczywistego, czyli jego wymiary są dwa razy większe od rzeczywistych.

Skala 1:1 oznacza, że przedstawiony obiekt jest taki sam jak rzeczywisty.

Przykład:

skala
 

Prostokąt środkowy jest wykonany w skali 1:1. Mówimy, że jest naturalnej wielkości. Prostokąt po lewej stronie został narysowany w skali 1:2, czyli jego wszystkie wymiary zostały zmniejszone dwa razy. Prostokąt po prawej stronie został narysowany w skali 2:1, czyli jego wszystkie wymiary zostały zwiększone dwa razy.

 

Przykłady na odczytywanie skali:

  • skala 1:50 oznacza zmniejszenie 50 razy
  • skala 20:1 oznacza zwiększenie 20 razy
  • skala 1:8 oznacza zmniejszenie 8 razy
  • skala 5:1 oznacza zwiększenie 5 razy
 

Plan to obraz niewielkiego obszaru, terenu, przedstawiony na płaszczyźnie w skali. Plany wykonuje się np. do przedstawienia pokoju, mieszkania, domu, rozkładu ulic w osiedlu lub mieście.

Mapa to podobnie jak plan obraz obszaru, tylko większego, przedstawiony na płaszczyźnie w skali (mapa musi uwzględniać deformację kuli ziemskiej). Mapy to rysunki terenu, kraju, kontynentu.

Skala mapy
Na mapach używa się skali pomniejszonej np. 1:1000000. Oznacza to, że 1 cm na mapie oznacza 1000000 cm w rzeczywistości (w terenie).

Przykłady na odczytywanie skali mapy
  • skala 1:500000 oznacza, że 1 cm na mapie to 500000 cm w rzeczywistości
  • skala 1:2000 oznacza, że 1 cm na mapie to 2000 cm w rzeczywistości
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom