Z wysokości 1,5 m... - Zadanie 65: Fizyka. Zbiór zadań 1 - strona 86
Wybierz przedmiot
Brak innych książek z tego przedmiotu
Z wysokości 1,5 m... 4.71 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 1 Klasa
  3. Fizyka

Dane:

 

 

 

 

 

Szukane:

 

Rozwiązanie:

Rozważmy energie, jakie posiada piłka. Na największej wysokości posiada ona pewną energię potencjalną. Następnie spada na równię pochyłą nabywając energii kinetycznej, a kolejno wytracając ją w dalszym ruchu. Energię potencjalną ciała przedstawiamy za pomocą wzoru:

 

gdzie Ep jest energią potencjalną ciała o masie m znajdującego się na wysokości h, na które działa przyspieszenie ziemskie g. Energię kinetyczną ciała przedstawiamy za pomocą wzoru:

 

gdzie Ek jest energią kinetyczną ciała o masie m poruszającego się z prędkością v. Piłka spadając na równię wytraca energię poprzez wykonanie pracy przez działające na nią siły. Pracę wykonaną przez poruszające się ciało przedstawiamy zależnością:

 

gdzie W jest pracą wykonaną przez poruszające się ciało, na które działa siła F na odcinku s. Wykonajmy rysunek przedstawiający poszczególne etapy ruchu piłki i zaznaczmy na nim siły działające na piłkę oraz

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Barbara Budny
Wydawnictwo: Operon
Rok wydania:
ISBN: 9788376808918
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Najmniejsza wspólna wielokrotność (NWW)

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Przykłady:

  • Najmniejszą wspólną wielokrotnością liczb 3 i 5 jest 15.
    1. Wypiszmy wielokrotności liczby 3 (różne od 0): 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...
    2. Wypiszmy wielokrotności liczby 5 (różne od 0): 5, 10, 15, 20, 25, 30, 35, ...
    3. Wśród wielokrotności liczby 3 i liczby 5 szukamy najmniejszej liczby, która jest zarówno wielokrotnością 3 i 5. Jest to 15.

  • Najmniejszą wspólną wielokrotnością liczb 4 i 6 jest 12.
    1. Wypiszmy wielokrotności liczby 4 (różne od 0): 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...
    2. Wypiszmy wielokrotności liczby 6 (różne od 0): 6, 12, 18, 24, 30, 36, 42, 48, ...
    3. Wśród wielokrotności wyżej wypisanych szukamy najmniejszej liczby, która jest zarówno wielokrotnością 4 i 6. Jest to 12.


Najmniejszą wspólną wielokrotność dwóch liczb można znaleźć także wykorzystując rozkład na czynniki pierwsze. 

Aby znaleźć NWW dwóch liczb należy: 

  1. Rozłożyć liczby na czynniki pierwsze. 

  2. Zaznaczyć wspólne dzielniki obu liczb. 

  3. Obliczyć iloczyn czynników pierwszej liczby oraz niezaznaczonych czynników drugiej liczby. 

Przykład:

Koło i okrąg

Okrąg o środku S i promieniu długości r (r – to długość, więc jest liczbą dodatnią, co zapisujemy r>0) jest to krzywa, której wszystkie punkty leżą w tej samej odległości od danego punktu S zwanego środkiem okręgu.

Inaczej mówiąc: okręgiem o środku S i promieniu r nazywamy zbiór wszystkich punków płaszczyzny, których odległość od środka S jest równa długości promienia r.

okreg1
 

Koło o środku S i promieniu długości r to część płaszczyzny ograniczona okręgiem wraz z tym okręgiem.

Innymi słowy koło o środku S i promieniu długości r to figura złożona z tych punktów płaszczyzny, których odległość od środka S jest mniejsza lub równa od długości promienia r.

okreg2
 

Różnica między okręgiem a kołem – przykład praktyczny

Gdy obrysujemy np. monetę powstanie nam okrąg. Po zakolorowaniu tego okręgu powstanie nam koło, czyli zbiór punktów leżących zarówno na okręgu, jak i w środku.

okrag_kolo

Środek okręgu (lub koła) to punkt znajdujący się w takiej samej odległości od każdego punktu okręgu.
Promień okręgu (lub koła) to każdy odcinek, który łączy środek okręgu z punktem należącym do okręgu.

Cięciwa okręgu (lub koła) - odcinek łączący dwa punkty okręgu
Średnica okręgu (lub koła) - cięciwa przechodząca przez środek okręgu. Jest ona najdłuższą cięciwą okręgu (lub koła).

Cięciwa dzieli okrąg na dwa łuki.
Średnica dzieli okrąg na dwa półokręgi, a koło na dwa półkola.

kolo_opis
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2854ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA5654WIADOMOŚCI
NAPISALIŚCIE781KOMENTARZY
komentarze
... i7982razy podziękowaliście
Autorom