Ile wynosi prędkość ucieczki... 4.8 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 1 Klasa
  3. Fizyka
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup pakiet Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
Informacje
Autorzy: Bogdan Mendel, Janusz Mendel
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326709111
Autor rozwiązania
user profile

Ania

25309

Nauczyciel

Wiedza
Najmniejsza wspólna wielokrotność (NWW)

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Przykłady:

  • Najmniejszą wspólną wielokrotnością liczb 3 i 5 jest 15.
    1. Wypiszmy wielokrotności liczby 3 (różne od 0): 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...
    2. Wypiszmy wielokrotności liczby 5 (różne od 0): 5, 10, 15, 20, 25, 30, 35, ...
    3. Wśród wielokrotności liczby 3 i liczby 5 szukamy najmniejszej liczby, która jest zarówno wielokrotnością 3 i 5. Jest to 15.

  • Najmniejszą wspólną wielokrotnością liczb 4 i 6 jest 12.
    1. Wypiszmy wielokrotności liczby 4 (różne od 0): 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...
    2. Wypiszmy wielokrotności liczby 6 (różne od 0): 6, 12, 18, 24, 30, 36, 42, 48, ...
    3. Wśród wielokrotności wyżej wypisanych szukamy najmniejszej liczby, która jest zarówno wielokrotnością 4 i 6. Jest to 12.


Najmniejszą wspólną wielokrotność dwóch liczb można znaleźć także wykorzystując rozkład na czynniki pierwsze. 

Aby znaleźć NWW dwóch liczb należy: 

  1. Rozłożyć liczby na czynniki pierwsze. 

  2. Zaznaczyć wspólne dzielniki obu liczb. 

  3. Obliczyć iloczyn czynników pierwszej liczby oraz niezaznaczonych czynników drugiej liczby. 

Przykład:

Porównywanie ułamków dziesiętnych

Aby ustalić, który z dwóch ułamków dziesiętnych jest większy, wystarczy porównać kolejno rzędy, zaczynając od najwyższego. Oznacza to, że porównujemy kolejno cyfry z których zbudowany jest ułamek dziesiętny, czyli zaczynamy od cyfr części całkowitej, a później przechodzimy to porównywania cyfr części dziesiętnych.

W praktyce porównywanie ułamków dziesiętnych odbywa się następująco:
  • Najpierw porównujemy części całkowite, jeżeli nie są równe, to mniejszy jest ułamek o mniejszej części całkowitej;

  • Jeżeli obie części całkowite są równe, to porównujemy ich części dziesiętne. Jeżeli części dziesiętne nie są równe, to mniejszy jest ułamek o mniejszej części dziesiętnej;

  • Gdy części dziesiętne są równe, to porównujemy ich części setne, tysięczne itd., aż do uzyskania odpowiedzi.

  Zapamiętaj

Gdy na końcu ułamka dziesiętnego dopisujemy lub pomijamy zero, to jego wartość się nie zmienia.

Przykłady:
$$0,34=0,340=0,3400=0,34000=...$$
$$0,5600=0,560=0,56$$

W związku z powyższą uwagą, jeżeli w czasie porównywania ułamków w którymś zabraknie cyfr po przecinku, to należy dopisać odpowiednią liczbę zer.
 

Przykład: Porównajmy ułamki 5,25 i 5,23.
Przed porównywaniem ułamków wygodnie jest zapisać porównywane liczby jedna pod drugą, ale tak by zgadzały się rzędy, czyli przecinek pod przecinkiem.

porownanie1
Widzimy, że w porównywanych ułamkach części jedności są takie same, części dziesiętne także są równe, natomiast w rzędzie części setnych 5>3, zatem ułamek 5,25 jest większy od 5,23. Zatem 5,25>5,23.

Przykład: Porównajmy ułamki 0,8 i 0,81.
Zapisujemy ułamki jeden pod drugim, tak aby zgadzały się rzędy, czyli przecinek pod przecinkiem. Ponadto dopisujemy 0 w ułamku 0,8.

porownanie2

Widzimy, że w porównywanych ułamkach części jedności są takie same, części dziesiętne także są równe, natomiast w rzędzie części setnych 0<1, zatem ułamek 0,81 jest większy od 0,8. Zatem 0,81>0,8.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom