Świat fizyki 1A (Zeszyt ćwiczeń, ZamKor)

Cel:Obserwujemy skutki ciśnienia atmosferycznego 4.52 gwiazdek na podstawie 23 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Fizyka

Cel:Obserwujemy skutki ciśnienia atmosferycznego

3
 Zadanie

Schematyczny rysunek doświadczenia:

Wynik obserwacji: Przyssawka przyczepia się do płytki w łazience. Podważona przyssawka od razu spada na ziemie. Wyjaśnienie zaobserwowanego zjawiska: Kiedy przytwierdzamy przyssawkę do płytki w łazience, przylega ona szczelnie do tej płytki i pomiędzy nimi nie występuje ciśnienie atmosferyczne. Te jednak naciska na powierzchnię wieszaka od strony zewnętrznej i przeciwdziała sile grawitacji, wkutek czego przyssawka nie zlatuje. Kiedy podważamy przyssawkę nożem, ta zlatuje, gdyż ciśnienie dostaje się pomiędzy nią a płytkę i nie przeciwdziała już sile grawitacji,  tylko naciska na przyssawkę równomiernie ze wszystkich kierunków.   Przyssawka nie przyczepia się do zwykłej ściany. Jej powierzchnia nie jest na tyle gładka, tylko chropowata, (czego nie widać gołym okiem). Wskutek tego powietrze dostaje się między przyssawkę i ścianę,a  tym samym ciśnienie atmosferyczne naciska na przyssawkę równomiernie ze wszystkich kierunków, wobec czego nie przeciwdziała sile grawitacji i przyssawka spada.

DYSKUSJA
user profile image
Gracjan

13 października 2017
dzięki :)
user profile image
Szczupły

2 października 2017
dzięki!
Informacje
Autorzy: Maria Rozenbajgier, Ryszard Rozenbajgier, Małgorzata Godlewska, Danuta Szot-Gawlik
Wydawnictwo: ZamKor
Rok wydania:
Autor rozwiązania
user profile image

Monika

19882

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Pole powierzchni prostopadłościanu

Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.

$$P_p$$ -> pole powierzchni

Pole powierzchni prostopadłościanu
 

Każdy prostopadłościan ma 3 pary takich samych ścian.

Pole powierzchni oblicza się z poniższego wzoru, gdzie $$P_1$$, $$P_2$$ i $$P_3$$ to pola ścian prostopadłościanu.

$$P_p=2•P_1+2•P_2+2•P_3$$

Wzór na pole powierzchni prostopadłościanu możemy zapisać w następującej postaci:
$$P_p = 2•a•b + 2•b•c + 2•a•c$$ (a,b,c - wymiary prostopadłościanu)
 

  Zapamiętaj

Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $$P_p=6•P$$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $$P_p = 6•a•a = 6•a^2$$ (a - bok sześcianu).

Ułamki właściwe i niewłaściwe
  1. Ułamek właściwy – ułamek, którego licznik jest mniejszy od mianownika. Ułamek właściwy ma zawsze wartość mniejszą od 1.
    Przykłady: $$3/8$$, $${23}/{36}$$, $$1/4$$, $$0/5$$.
     

  2. Ułamek niewłaściwy – ułamek, którego mianownik jest równy lub mniejszy od licznika. Ułamek niewłaściwy ma zawsze wartość większą od 1.
    Przykłady: $${15}/7$$, $$3/1$$, $${129}/5$$, $${10}/5$$.
     

Zobacz także
Udostępnij zadanie