Spotkania z fizyką 3 (Zeszyt ćwiczeń, Nowa Era)

Ile razy zmaleje siła wzajemnego oddziaływania 4.64 gwiazdek na podstawie 14 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Fizyka

Ile razy zmaleje siła wzajemnego oddziaływania

1
 Zadanie
2
 Zadanie

3
 Zadanie

Siłę wzajemnego oddziaływania między dwoma ładunkami wyrażamy wzorem:

`F= k * (q_1*q_2)/r^2`

Oznaczmy ją jaką początkową siłę przed zmianą odległości:

`F_1= k * (q_1*q_2)/r^2`

Teraz obliczamy siłę po powiększeniu odległości między ładunkami czterokrotnie:

`F_2= k * (q_1*q_2)/(4r)^2`

`F_2= k * (q_1*q_2)/(16r^2)`

Sprawdzamy jak zmieniła się ta siła po zmianach, obliczając stosunek sił: po i przed zmianą:

`F_2/F_1= (k* (q_1*q_2)/(16r^2))/(k * (q_1*q_2)/(r^2))= (strikek* (strike(q_1*q_2))/(16strike(r^2)))/(strikek *strike(q_1*q_2)/(strike(r^2)))=1/16`

Stosunek siły końcowej do siły początkowej wynosi 1/16, zatem siła oddziaływania między tymi dwoma ładunkami po tych zmianach zmalała 16 razy.

 

Odpowiedź:

Siła oddziaływania między tymi dwoma ładunkami po tych zmianach zmalała 16 razy.

DYSKUSJA
user profile image
Bruno

30 listopada 2017
Dzięki za pomoc!
user profile image
Tomek

22 października 2017
dzieki :):)
user profile image
Emilia

27 września 2017
Dzięki :)
Informacje
Autorzy: Francuz-Ornat Grażyna, Generowicz Grażyna, Kulawik Teresa
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Monika

20041

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Odejmowanie ułamków zwykłych
  1. Odejmowanie ułamków o jednakowych mianownikach – odejmujemy liczniki, a mianownik pozostawiamy bez zmian.

    Przykład:

    • $$5/6-2/6= 3/6= {3÷3}/{6÷3}=1/2$$

      Uwaga

    Gdy w wyniku odejmowania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości.
    Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę.

  2. Odejmowanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy odejmowanie.

    Przykład:

    • $$3/{10}- 1/5=3/{10}- {1•2}/{5•2}=3/{10}- 2/{10}=1/{10}$$
       
  3. Odejmowanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy odejmowanie ułamków o jednakowych mianownikach.

      Przykład:

      $$2 1/3- 1 1/3= {2•3+1}/3-{1•3+1}/3=7/3-4/3=3/3=1$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.

      Przykład:

      $$2 1/3- 1 1/3= 2 + 1/3- 1 - 1/3= 2 – 1 + 1/3- 1/3= 1 + 0 = 1$$
       
  4. Odejmowanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy odejmowanie.

      Przykład:

      $$2 1/3- 1 1/2= {2•3+1}/3-{1•2+1}/2=7/3-3/2={7•2}/{3•2}-{3•3}/{2•3}={14}/6-9/6=5/6$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.

      Przykład:

      $$2 1/2- 1 1/3= 2 + 1/2- 1 - 1/3= 2 - 1 + 1/2-1/3= 1 +{1•3}/{2•3}-{1•2}/{3•2}= 1 + 3/6- 2/6= 1 + 1/6= 1 1/6$$
 
Zamiana ułamka dziesiętnego na zwykły

Licznikiem ułamka zwykłego jest liczba naturalna jaką utworzyłyby cyfry ułamka dziesiętnego, gdyby nie było przecinka, mianownikiem jest liczba zbudowana z cyfry 1 i tylu zer, ile cyfr po przecinku zawiera ułamek dziesiętny.

Przykłady:

  • $$0,25 = {25}/{100}$$ ← licznikiem ułamka zwykłego jest liczba 25 (ponieważ taką liczbę tworzą cyfry ułamka dziesiętnego bez przecinka), mianownikiem ułamka zwykłego jest liczba zbudowana z 1 oraz z dwóch zer, czyli liczba 100, ponieważ dwie cyfry stoją po przecinku,

  • $$4,305={4305}/{1000}$$ ← licznikiem ułamka zwykłego jest liczba 4305 (ponieważ taką liczbę tworzą cyfry ułamka dziesiętnego bez przecinka), mianownikiem ułamka zwykłego jest liczba zbudowana z 1 oraz z trzech zer, czyli liczba 1000, ponieważ trzy cyfry stoją po przecinku.

Zobacz także
Udostępnij zadanie