Dzieci rozmawiały o tym, co można... 4.22 gwiazdek na podstawie 9 opinii
  1. Szkoła podstawowa
  2. 3 Klasa
  3. Edukacja wczesnoszkolna

Dzieci rozmawiały o tym, co można...

1
 Zadanie

5
 Zadanie

Dokańczamy przykłady:

mieszkać w namiocie,

opalać się na leżaku

kąpać się w morzu,

skakać na jednej nodze, 

jeździć na rowerze, 

wspinać się na szczyt

  • Zapisujemy zdanie wpisując wszystkie zdania w odpowiedniej formie (do swojej odpowiedzi wybierz tylko cztery przykłady!):

W czasie wakacji dzieci budowały zamki z piasku, oglądały zabytki, mieszkały w namiocie, opalały się na leżaku, kąpały się w morzu, skakały na jednej nodze, jeździły na rowerze, wspinały się na szczyty. 

Podkreślone wyrazy to czasowniki. 

DYSKUSJA
klasa:
Informacje
Autorzy: Ewa Hryszkiewicz, Małgorzata Ogrodowczyk, Barbara Stępień, Joanna Winiecka-Nowak
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326726644
Autor rozwiązania
user profile

Ola

17359

Nauczyciel

Wiedza
Prostopadłościan i sześcian

Prostopadłościan to figura przestrzenna, której kształt przypomina pudełko lub akwarium.

Prostopadłościan

  • Każda ściana prostopadłościanu jest prostokątem.

  • Każdy prostopadłościan ma 6 ścian, 8 wierzchołków i 12 krawędzi.

  • Dwie ściany mające wspólną krawędź nazywamy prostopadłymi.

  • Dwie ściany, które nie mają wspólnej krawędzi, nazywamy równoległymi.

  • Każda ściana jest prostopadła do czterech ścian oraz równoległa do jednej ściany.


Z każdego wierzchołka wychodzą trzy krawędzie – jedną nazywamy długością, drugą – szerokością, trzecią – wysokością prostopadłościanu i oznaczamy je odpowiednio literami a, b, c.

Długości tych krawędzi nazywamy wymiarami prostopadłościanu.

a – długość prostopadłościanu, b – szerokość prostopadłościanu, c - wysokość prostopadłościanu.


Prostopadłościan, którego wszystkie ściany są jednakowymi kwadratami nazywamy sześcianem.

Wszystkie krawędzie sześcianu mają jednakową długość.

kwadrat

a - długość krawędzi sześcianu

Zamiana ułamka dziesiętnego na zwykły

Licznikiem ułamka zwykłego jest liczba naturalna jaką utworzyłyby cyfry ułamka dziesiętnego, gdyby nie było przecinka, mianownikiem jest liczba zbudowana z cyfry 1 i tylu zer, ile cyfr po przecinku zawiera ułamek dziesiętny.

Przykłady:

  • $$0,25 = {25}/{100}$$ ← licznikiem ułamka zwykłego jest liczba 25 (ponieważ taką liczbę tworzą cyfry ułamka dziesiętnego bez przecinka), mianownikiem ułamka zwykłego jest liczba zbudowana z 1 oraz z dwóch zer, czyli liczba 100, ponieważ dwie cyfry stoją po przecinku,

  • $$4,305={4305}/{1000}$$ ← licznikiem ułamka zwykłego jest liczba 4305 (ponieważ taką liczbę tworzą cyfry ułamka dziesiętnego bez przecinka), mianownikiem ułamka zwykłego jest liczba zbudowana z 1 oraz z trzech zer, czyli liczba 1000, ponieważ trzy cyfry stoją po przecinku.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom