Dokańczamy przykłady:
mieszkać w namiocie,
opalać się na leżaku
kąpać się w morzu,
skakać na jednej nodze,
jeździć na rowerze,
wspinać się na szczyt
W czasie wakacji dzieci budowały zamki z piasku, oglądały zabytki, mieszkały w namiocie, opalały się na leżaku, kąpały się w morzu, skakały na jednej nodze, jeździły na rowerze, wspinały się na szczyty.
Podkreślone wyrazy to czasowniki.
System liczenia, którego używamy jest pozycyjny i dziesiątkowy. Wyjaśnijmy co to oznacza:
Przykład (wyjaśniający pojęcie pozycyjnego systemu dziesiątkowego):
Każda z cyfr użyta w powyższej liczbie tworzy określoną wartość, która jest uzależniona od miejsca (pozycji), jaką zajmuje ta cyfra w zapisie utworzonej liczby.
Jeśli użyjemy dokładnie tych samych cyfr, z których zbudowana jest powyższa liczba, ale użyjemy ich w innej kolejności to otrzymamy całkiem inną liczbę (np. 935287, 728395).
Przestawienie kolejności cyfr zmienia wartość liczby, dlatego nasz system liczenia jest pozycyjny (ponieważ miejsce cyfry w zapisie liczby nadaje wartość tej liczbie), natomiast używanie dziesięciu cyfr do zapisu liczby powoduje, że nazywamy go dziesiątkowym systemem.
Liczbę z powyższego przykładu możemy zapisać też w następujący sposób:
$$3•1+9•10+5•100+7•1000+8•10000+2•100000= 287 593$$
Pozycyjny system dziesiątkowy pochodzi prawdopodobnie z Indii (znany jest napis z 683 roku zawierający zapis liczby w systemie pozycyjnym z użyciem zera). Za pośrednictwem Arabów system ten oraz zero dotarły do Europy (stąd nazwa cyfry arabskie) i obecnie jest powszechnie używanym systemem liczbowym.
Dzielnik liczby to taka liczba, przez którą dana liczba jest podzielna. Dzielnikiem każdej liczby naturalnej n (n>1) jest 1 oraz ona sama.
Inaczej mówiąc, dzielnikiem liczby naturalnej `n` nazywamy taką liczbę naturalną `m`, że `n=k*m` `k` jest liczbą naturalną.
Przykład:
10 dzieli się przez 1, 2, 5 i 10. Wynika z tego, że dzielnikami liczby 10 są liczby 1, 2, 5 i 10.
Możemy też powiedzieć, że:
Uwaga!!!
Jeżeli liczba naturalna `m` jest dzielnikiem liczby `n` , to liczba `n` jest wielokrotnością liczby `m` .
Przykład:
Liczba 2 jest dzielnikiem liczby 10, czyli liczba 10 jest wielokrotnością liczby 2.
Dowolną liczbę naturalną n większą od 1 (n>1), która ma tylko dwa dzielniki, 1 oraz samą siebie, nazywamy liczbą pierwszą.
Liczbami pierwszymi są liczby: 2, 3, 5, 7, 11, 13, 17, 19, 23...
Liczbę naturalną n (n>1) niebędącą liczbą pierwszą, czyli posiadającą więcej niż dwa dzielniki, nazywamy liczbą złożoną.
Liczbami złożonymi są: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18...
Zapamiętaj!!!
Liczby 0 i 1 nie są ani liczbami pierwszymi ani złożonymi.