Na podstawie scenek z tekstu... - Zadanie 1: Ćwiczenia z pomysłem 3. Część 2 - strona 4
Wybierz przedmiot
Brak innych książek z tego przedmiotu
Na podstawie scenek z tekstu... 4.83 gwiazdek na podstawie 6 opinii
  1. Szkoła podstawowa
  2. 3 Klasa
  3. Edukacja wczesnoszkolna

Na podstawie scenek z tekstu...

1
 Zadanie

2
 Zadanie
3
 Zadanie
4
 Zadanie

Imiona należy zapisać w kolejności alfabetycznej w następujący sposób:

Basia, Filip, Igor, Kacper, Lilka, Marysia, Michał, Piotrek, Staś, Tymek

DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Jolanta Filipowicz, Katarzyna HArmak, Kamila Izbińska, Ewa Kłos
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302156274
Autor rozwiązania
user profile

Damian

35790

Nauczyciel

Wiedza
Zamiana ułamka zwykłego na dziesiętny

Jeżeli ułamek zwykły posiada w mianowniku 10, 100, 1000, … to zamieniamy go na ułamek dziesiętny w następujący sposób: między cyframi liczby znajdującej się w liczniku danego ułamka zwykłego stawiamy przecinek tak, aby po przecinku było tyle cyfr, ile zer w mianowniku. Gdyby zabrakło cyfr przy stawianiu przecinka, to należy dopisać brakującą ilość zer.

Przykłady:

  • $3/{10}= 0,3$ ← przepisujemy liczbę 3 z licznika i stawiamy przecinek tak, aby po przecinku była jedna cyfra (bo w mianowniku mamy jedno zero); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • ${64}/{100}= 0,64$ ← przepisujemy liczbę 64 z licznika i stawiamy przecinek tak, aby po przecinku były dwie cyfry (bo w mianowniku mamy dwa zera); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • ${482}/{1000} = 0,482$ ← przepisujemy liczbę 482 z licznika i stawiamy przecinek tak, aby po przecinku były trzy cyfry (bo w mianowniku mamy trzy zera); musimy dopisać 0, ponieważ brakuje nam cyfr przy stawianiu przecinka,

  • ${45}/{10}= 4,5$ ← przepisujemy liczbę 45 z licznika i stawiamy przecinek tak, aby po przecinku była jedna cyfra (bo w mianowniku mamy jedno zero); w tym przypadku nie ma potrzeby dopisywania zer,

  • ${2374}/{100}= 23,74$ ← przepisujemy liczbę 2374 z licznika i stawiamy przecinek tak, aby po przecinku były dwie cyfry (bo w mianowniku mamy dwa zera); w tym przypadku nie ma potrzeby dopisywania zer.

  Uwaga

Istnieją ułamki zwykłe, które możemy rozszerzyć lub skrócić tak, aby otrzymać w mianowniku 10, 100, 1000,... Jednak nie wszystkie ułamki można zamienić na równe im ułamki dziesiętne, to znaczy tak rozszerzyć lub skrócić, aby otrzymać ułamek o mianowniku 10, 100, 1000 itd.

Przykłady ułamków, które dają się rozszerzyć lub skrócić, tak aby otrzymać ułamek dziesiętny:
$1/2= {1•5}/{2•5}=5/{10}= 0,5$
$3/{20}= {3•5}/{20•5}= {15}/{100}= 0,15$
${80}/{400}= {80÷4}/{400÷4}={20}/{100}= 2/{10}= 0,2$

Nie można natomiast zamienić na ułamek dziesiętny ułamka $1/3$. Ułamka tego nie można skrócić ani rozszerzyć tak, aby w mianowniku pojawiła się liczba 10, 100, 1000 itd.

Dzielniki

Dzielnik liczby to taka liczba, przez którą dana liczba jest podzielna. Dzielnikiem każdej liczby naturalnej n (n>1) jest 1 oraz ona sama.

Inaczej mówiąc, dzielnikiem liczby naturalnej  `n`  nazywamy taką liczbę naturalną  `m`, że  `n=k*m` `k`   jest liczbą naturalną. 


Przykład:

10 dzieli się przez 1, 2, 5 i 10. Wynika z tego, że dzielnikami liczby 10 są liczby 1, 2, 5 i 10.

Możemy też powiedzieć, że:

  • 1 jest dzielnikiem 10 bo  `10=10*1`   
  • 2 jest dzielnikiem 10 bo  `10=5*2`  
  • 5 jest dzielnikiem 10 bo  `10=2*5`  
  • 10 jest dzielnikiem 10 bo  `10=1*10`  


Uwaga!!! 

Jeżeli liczba naturalna `m`  jest dzielnikiem liczby `n` , to liczba `n`  jest wielokrotnością liczby `m` .

Przykład:

Liczba 2 jest dzielnikiem liczby 10, czyli liczba 10 jest wielokrotnością liczby 2.


Dowolną liczbę naturalną n większą od 1 (n>1), która ma tylko dwa dzielniki, 1 oraz samą siebie, nazywamy liczbą pierwszą.

Liczbami pierwszymi są liczby: 2, 3, 5, 7, 11, 13, 17, 19, 23...

Liczbę naturalną n (n>1) niebędącą liczbą pierwszą, czyli posiadającą więcej niż dwa dzielniki, nazywamy liczbą złożoną.

Liczbami złożonymi są: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18...


Zapamiętaj!!!

Liczby 0 i 1 nie są ani liczbami pierwszymi ani złożonymi. 

 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2718ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA6157WIADOMOŚCI
NAPISALIŚCIE773KOMENTARZY
komentarze
... i8023razy podziękowaliście
Autorom