Przeprowadzono doświadczenie chemiczne... - Zadanie 4: Chemia Nowej Ery 2 - strona 9
Wybierz przedmiot
Brak innych książek z tego przedmiotu
Przeprowadzono doświadczenie chemiczne... 4.64 gwiazdek na podstawie 28 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Chemia

Przeprowadzono doświadczenie chemiczne...

4
 Zadanie

5
 Zadanie

Obserwacje: Żarówka zaświeciła się w roztworze kwasu chlorowodorowego oraz

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
opinia do odpowiedzi undefined
Edyta

2 stycznia 2019
Dzieki za pomoc
opinia do odpowiedzi undefined
Kacper Piórkowski

24 lutego 2018
Dzięki!: )
komentarz do zadania undefined
Gość

9 listopada 2017
dzięki:)
komentarz do odpowiedzi undefined
Klaudyna

6 listopada 2017
dzięki!
opinia do rozwiązania undefined
Klaudia

30 października 2017
Dzieki za pomoc :):)
opinia do odpowiedzi undefined
Alicja

26 października 2017
Dzięki
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Małgorzata Mańska. Elżbieta Megiel
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Ania

29862

Nauczyciel

Wiedza
Mnożenie ułamków dziesiętnych przez 10, 100, 1000...

Aby pomnożyć ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w prawo o tyle miejsc ile jest zer w liczbie przez którą mnożymy (czyli w 10, 100, 1000 itd.).

Przykłady:

  • $0,253•10= 2,53$ ← przesuwamy przecinek o jedno miejsce w prawo
  • $3,007•100= 300,7$ ← przesuwamy przecinek o dwa miejsca w prawo
  • $0,024•1000= 24$ ← przesuwamy przecinek o trzy miejsca w prawo
Pozycyjny system dziesiątkowy

System liczenia, którego używamy jest pozycyjny i dziesiątkowy. Wyjaśnijmy co to oznacza:

  • pozycyjny, ponieważ liczbę przedstawia się jako ciąg cyfr, a wartość poszczególnych cyfr zależy od miejsca (pozycji), jakie zajmuje ta cyfra,
  • dziesiątkowy, ponieważ liczby zapisujemy za pomocą dziesięciu znaków, zwanych cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Przykład (wyjaśniający pojęcie pozycyjnego systemu dziesiątkowego):

img01
 

Każda z cyfr użyta w powyższej liczbie tworzy określoną wartość, która jest uzależniona od miejsca (pozycji), jaką zajmuje ta cyfra w zapisie utworzonej liczby.

Jeśli użyjemy dokładnie tych samych cyfr, z których zbudowana jest powyższa liczba, ale użyjemy ich w innej kolejności to otrzymamy całkiem inną liczbę (np. 935287, 728395).

Przestawienie kolejności cyfr zmienia wartość liczby, dlatego nasz system liczenia jest pozycyjny (ponieważ miejsce cyfry w zapisie liczby nadaje wartość tej liczbie), natomiast używanie dziesięciu cyfr do zapisu liczby powoduje, że nazywamy go dziesiątkowym systemem.
 

Liczbę z powyższego przykładu możemy zapisać też w następujący sposób:
$3•1+9•10+5•100+7•1000+8•10000+2•100000= 287 593$
 

Przykład (czytanie zapisanych liczb w pozycyjnym systemie dziesiątkowym):
  • 22 500 - czytamy: dwadzieścia dwa i pół tysiąca lub dwadzieścia dwa tysiące pięćset,
  • 1 675 241 - czytamy: milion sześćset siedemdziesiąt pięć tysięcy dwieście czterdzieści jeden.

  Ciekawostka

Pozycyjny system dziesiątkowy pochodzi prawdopodobnie z Indii (znany jest napis z 683 roku zawierający zapis liczby w systemie pozycyjnym z użyciem zera). Za pośrednictwem Arabów system ten oraz zero dotarły do Europy (stąd nazwa cyfry arabskie) i obecnie jest powszechnie używanym systemem liczbowym.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2921ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA5013WIADOMOŚCI
NAPISALIŚCIE768KOMENTARZY
komentarze
... i7422razy podziękowaliście
Autorom