Przeanalizuj budowę następujących... - Zadanie 1568: Chemia 1. Zbiór zadań maturalnych wraz z odpowiedziami 2002-2017 - strona 451
Chemia
Chemia 1. Zbiór zadań maturalnych wraz z odpowiedziami 2002-2017 (Zbiór zadań, Oficyna Wydawnicza Nowa Matura)
Przeanalizuj budowę następujących... 4.5 gwiazdek na podstawie 8 opinii
  1. Liceum
  2. 1 Klasa
  3. Chemia

Przeanalizuj budowę następujących...

1568
 Zadanie

1569
 Zadanie
1570
 Zadanie
1571
 Zadanie
Zadanie premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy I liceum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
I liceum
Informacje
Autorzy: Dariusz Witowski, Jan Sylwester Witowski
Wydawnictwo: Oficyna Wydawnicza Nowa Matura
Rok wydania:
ISBN: 9788393094240
Autor rozwiązania
user profile

Ania

28059

Nauczyciel

Wiedza
Jaki to procent?

Aby dowiedzieć się jakim procentem jednej z liczb jest druga liczba wystarczy przedstawić te liczby w postaci ułamka zwykłego a następnie pomnożyć razy 100%. 

Należy pamiętać, że w mianowniku musi znaleźć się ta liczba, do której porównujemy daną liczbę. 


Przykłady:

  • Jakim procentem liczby 264 jest liczba 165?  [Liczbę 165 porównujemy z liczbą 264, więc liczba 264 musi znaleźć się w mianowniku.] 

    `165/264*100% = 55/88 * 100% = 5/strike8^2*strike100^25% = 5/2*25% = 125/2% = 62,5%` 

  • Jakim procentem liczby 150 jest liczba 30?  [Liczbę 30 porównujemy z liczbą 150, więc liczba 150 musi znaleźć się w mianowniku.]

    `30/150*100% = 1/5*100% = 20%`
Liczby spełniające równania

Litery w równaniu oznaczają liczby, których nie znamy, czyli niewiadome

Liczby odpowiadające tym niewiadomym nazywamy liczbami spełniającymi równanie lub pierwiastkami równania.

Przykłady

  • równanie  `x+6=10`  spełnia liczba `4`, gdyż  `4+6=10`, czyli `x=4` 

  • równanie  `2x+1=1`  spełnia liczba `0`, gdyż  `2*0+1=0+1=1`, czyli `x=1`     



Równania z jedną niewiadomą mogą:

  • nie mieć żadnego rozwiązania - równania sprzeczne;

  • mieć jedno rozwiązanie;

  • mieć nieskończenie wiele rozwiązań - równania tożsamościowe.  

Przykłady: 

  • równanie  `x+5=0`  ma jedno rozwiązanie, spełnia je liczba  `-5` , czyli  `x=-5`   

  • równanie  `x+2=x+1`  nie ma rozwiązania, nie spełnia go żadna liczba - równanie sprzeczne

  • równanie  `x+2=2+x`  ma nieskończenie wiele rozwiązań, spełnia go każda liczba  - równanie tożsamościowe



Zbiór liczb spełniających równanie to zbiór rozwiązań równania

Jeśli dwa równania mają taki sam zbiór rozwiązań, to są to równania równoważne

Przykład: 

  • równania  `x+2=5`  i  `x-3=0`  są równoważne, gdyż rozwiązaniem każdego z nich jest liczba 3 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom