Wyjaśnij dlaczego za pomocą mikroskopu elektronowego - Zadanie 28: To jest chemia. Zbiór zadań. Zakres rozszerzony - strona 9
Wybierz przedmiot
Brak innych książek z tego przedmiotu
Wyjaśnij dlaczego za pomocą mikroskopu elektronowego 4.64 gwiazdek na podstawie 11 opinii
  1. Liceum
  2. 1 Klasa
  3. Chemia

Wyjaśnij dlaczego za pomocą mikroskopu elektronowego

22
 Zadanie
23
 Zadanie
24
 Zadanie
25
 Zadanie
26
 Zadanie
27
 Zadanie

28
 Zadanie

Mikroskop elektronowy  pozwala na badanie materii na poziomie atomowym. W zasadzie działania wykorzystywana jest wiązka elektronów o ściśle określonej energii i długości fali. Im większa energia, czyli krótsza fala, tym

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
komentarz do odpowiedzi undefined
Czesław

28 sierpnia 2018
Dziękuję!!!!
opinia do rozwiązania undefined
Antek

14 lutego 2018
dzięki
opinia do rozwiązania undefined
Małgorzata

15 listopada 2017
Dzieki za pomoc
opinia do odpowiedzi undefined
Piotrek

7 października 2017
Dzięki
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Stanisław Banaszkiewicz, Magdalena Kołodziejska, Elżbieta Megiel, Grażyna Świderska
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326717963
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $5•5=5^2 $, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $7•7•7=7^3$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $3•3•3•3•3=3^5 $, czytamy: „trzy do potęgi piątej”

    $2•2•2•2•2•2•2=2^7 $, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Kąty

Kąt to część płaszczyzny ograniczona dwiema półprostymi o wspólnym początku, wraz z tymi półprostymi.

Półproste nazywamy ramionami kąta, a ich początek – wierzchołkiem kąta.

kat-glowne
 


Rodzaje kątów:

  1. Kąt prosty – kąt, którego ramiona są do siebie prostopadłe – jego miara stopniowa to 90°.

    kąt prosty
  2. Kąt półpełny – kąt, którego ramiona tworzą prostą – jego miara stopniowa to 180°.
     

    kąt pólpelny
     
  3. Kąt ostry – kąt mniejszy od kąta prostego – jego miara stopniowa jest mniejsza od 90°.
     

    kąt ostry
     
  4. Kąt rozwarty - kąt większy od kąta prostego i mniejszy od kąta półpełnego – jego miara stopniowa jest większa od 90o i mniejsza od 180°.

    kąt rozwarty
  5. Kąt pełny – kąt, którego ramiona pokrywają się, inaczej mówiąc jedno ramię tego kąta po wykonaniu całego obrotu dookoła punktu O pokryje się z drugim ramieniem – jego miara stopniowa to 360°.
     

    kat-pelny
     
  6. Kąt zerowy – kąt o pokrywających się ramionach i pustym wnętrzu – jego miara stopniowa to 0°.

    kat-zerowy
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2848ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA5299WIADOMOŚCI
NAPISALIŚCIE745KOMENTARZY
komentarze
... i7515razy podziękowaliście
Autorom