Ciekawa chemia 3 (Zeszyt ćwiczeń, WSiP)

Oceń prawdziwość zdań opisujących właściwości mydeł 4.56 gwiazdek na podstawie 9 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Chemia

Oceń prawdziwość zdań opisujących właściwości mydeł

6
 Zadanie

I. Mydło potasowe, np palmitynian (...) - P

II. Mydło wapniowe, np stearynian (...) - P

III. W przemyśle mydła toaletowe (...) - F

IV. Mydła sodowe są twarde, a po (...) - P

DYSKUSJA
user profile image
Gość

07-10-2017
dzieki :):)
Informacje
Ciekawa chemia 3
Autorzy: Hanna Gulińska, Janina Smolińska
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Korepetytor

Masz wątpliwości co do rozwiązania?

Wiedza
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Cechy podzielności liczb

Cechy podzielności liczb ułatwiają znalezienie dzielników, zwłaszcza dużych liczb. Sprowadzają one rozwiązanie problemu podzielności liczb do prostych działań na niewielkich liczbach.

  1. Podzielność liczby przez 2

    Liczba jest podzielna przez 2, gdy jej ostatnią cyfrą jest 0, 2, 4, 6 lub 8.

    Przykład:

    • 1896319128 → liczba jest podzielna przez 2, ponieważ ostatnią cyfrą jest 8.
       
  2. Podzielność liczby przez 3

    Liczba jest podzielna przez 3, gdy suma jej cyfr dzieli się przez 3.

    Przykład:

    • 7981272 → liczba jest podzielna przez 3, ponieważ suma jej cyfr (7+9+8+1+2+7+2=36) dzieli się przez 3.
       
  3. Podzielność liczby przez 4

    Liczba jest podzielna przez 4, gdy jej dwie ostatnie cyfry tworzą liczbę podzielną przez 4.

    Przykład:

    • 21470092816 → liczba jest podzielna przez 4, ponieważ jej dwie ostatnie cyfry tworzą liczbę 16, a liczba 16 jest podzielna przez 4.
       
  4. Podzielność liczby przez 5

    Liczba jest podzielna przez 5, gdy jej ostatnią cyfrą jest 0 lub 5.

    Przykład:

    • 182947218415 → liczba jest podzielna przez 5, ponieważ jej ostatnią cyfrą jest 5.
       
  5. Podzielność liczby przez 6

    Liczba jest podzielna przez 6, gdy jednocześnie dzieli się przez 2 i 3.

    Przykład:

    • 1248 → liczba jest podzielna przez 6, ponieważ dzieli się przez 2 (jej ostatnią cyfrą jest 8), a także dzieli się przez 3 (suma jej cyfr 1+2+4+8=15 jest liczbą podzielną przez 3).
       
  6. Podzielność liczby przez 9

    Liczba jest podzielna przez 9 , gdy suma jej cyfr jest podzielna przez 9.

    Przykład:

    • 1890351 -> liczba jest podzielna przez 9, ponieważ suma jej cyfr (1+8+9+0+3+5+1=27) jest podzielna przez 9.
       
  7. Podzielność liczby przez 10

    Liczba jest podzielna przez 10, gdy jej ostatnią cyfra jest 0.

    Przykład:

    • 1920481290 → liczba jest podzielna przez 10, ponieważ jej ostatnią cyfrą jest 0.
       
  8. Podzielność liczby przez 25

    Liczba jest podzielna przez 25, gdy dwie ostatnie cyfry tworzą liczbę podzielną przez 25.

    Przykład:

    • 4675 → liczba podzielna przez 25, ponieważ jej dwie ostatnie cyfry tworzą liczbę 75, a 75 jest podzielne przez 25
       
  9. Podzielność liczby przez 100

    Liczba jest podzielna przez 100, gdy jej dwie ostatnie cyfry to zera.

    Przykład:

    • 12491848100 → liczba jest podzielna przez 100, ponieważ jej dwie ostatnie cyfry to zera.
Zobacz także
Udostępnij zadanie