Biologia na czasie 2. Zakres rozszerzony (Podręcznik, Nowa Era)

Wyjaśnij, w jaki sposób dochodzi do konfliktu serologicznego. 4.6 gwiazdek na podstawie 15 opinii
  1. Liceum
  2. 2 Klasa
  3. Biologia

Wyjaśnij, w jaki sposób dochodzi do konfliktu serologicznego.

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie
6
 Zadanie

7
 Zadanie

U niektórych osób w błonie erytrocytu występuje antygen D, który określa się czynnikiem Rh. Do konfliktu serologicznego dochodzi, kiedy matka ma grupę krwi bez czynnika Rh (Rh-), a dziecko ma grupę krwi Rh+ (ponieważ odziedziczyło czynnik Rh po ojcu). W momencie porodu (lub w przypadku poronienia) krew dziecka i matki mieszają się. Po zmieszaniu się krwi organizm matki wytwarza przeciwciała przeciw czynnikowi Rh (przeciwciała anty-Rh) znajdującemu się w krwi dziecka. Dzieje się tak, ponieważ dla organizmu matki jest on "obcy". Przenikające z krwi matki do krwi dziecka przeciwciała anty-Rh powodują aglutynację (zlepianie się) krwinek czerwonych dziecka. W przypadku pierwszej ciąży zagrożenie dla dziecka jest małe, ponieważ zanim organizm matki zdąży wyprodukować dużą liczbę przeciwciał, organizm dziecka opuści już macicę i drogi rodne kobiety. Ryzyko zaatakowania organizmu dziecka wzrasta w przypadku kolejnej ciąży (jeśli dziecko będzie miało grupę krwi Rh+ po ojcu), ponieważ we krwi matki obecne już będą przeciwciała. Podobna sytuacja ma miejsce, gdy np. podczas transfuzji przetoczono krew z czynnikiem Rh osobie, która tego czynnika nie posiada. 

DYSKUSJA
Informacje
Biologia na czasie 2. Zakres rozszerzony
Autorzy: Franciszek Dubert, Ryszard Kozik, Stanisław Krawczyk
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Monika

6936

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Proste, odcinki i kąty

Najprostszymi figurami geometrycznymi są: punkt, prosta, półprosta i odcinek.

  1. Punkt – jest to jedno z pojęć pierwotnych, co oznacza że nie posiada formalnej definicji, jednak możemy wyobrazić go sobie jako nieskończenie małą kropkę lub ślad po wbitej cienkiej szpilce. Punkty oznaczamy wielkimi literami alfabetu.

    punkt
     
  2. Prosta – jest to jedno z pojęć pierwotnych, co oznacza że nie posiada formalnej definicji, jednak możemy wyobrazić ją sobie jako niezwykle długą i cienką, naprężona nić lub ślad zgięcia wielkiej kartki papieru.

    Możemy też powiedzieć, że prosta jest figurą geometryczną złożoną z nieskończenie wielu punktów. Prosta jest nieograniczona, czyli nie ma ani początku ani końca. Proste oznaczamy małymi literami alfabetu.
     

    prosta

    Jeżeli punkt A należy do prostej a, to mówimy, że prosta a przechodzi przez punkt A.

    prosta-punkty

    $$A∈a$$ (czyt.: punkt A należy do prostej a); $$B∈a$$; $$C∉a$$ (czyt.: punkt C nie należy do prostej a); $$D∉a$$

    Przez jeden punkt można poprowadzić nieskończenie wiele prostych.

    prosta-przechodzaca-przez-punkty

    Przez dwa różne punkty A i B można poprowadzić tylko jedną prostą. Prostą przechodzącą przez dwa różne punkty A i B oznaczamy prostą AB.
     
  3. Półprosta – jedna z dwóch części prostej, na które punkt dzieli tę prostą, wraz z tym punktem. Inaczej mówiąc półprosta to część prostej ograniczona z jednej strony punktem, który jest jej początkiem.
     

    polprosta
     
  4. Odcinek – Jeżeli dane są dwa różne punkty A i B należące do prostej, to zbiór złożony z punktów A i B oraz z tych punktów prostej AB, które są zawarte między punktami A i B, nazywamy odcinkiem AB.


    odcinekab

    Punkty A i B nazywamy nazywamy końcami odcinka. Końce odcinków oznaczamy wielkimi literami alfabetu,natomiast odcinek możemy oznaczać małymi literami.
     
  5. Łamana – jest to figura geometryczna, będąca sumą skończonej liczby odcinków. Inaczej mówiąc, łamana to figura zbudowana z odcinków w taki sposób, że koniec jednego odcinka jest początkiem następnego odcinka.


    lamana
     

    Odcinki, z których składa się łamana nazywamy bokami łamanej, a ich końce wierzchołkami łamanej.
     

    • Jeśli pierwszy wierzchołek łamanej pokrywa się z ostatnim, to łamaną nazywamy zamkniętą.

      lamana-zamknieta
       
    • Jeśli pierwszy wierzchołek nie pokrywa się z ostatnim, to łamana nazywamy otwartą.

      lamana-otwarta
 
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Udostępnij zadanie