Oceń prawdziwość poniższych stwierdzeń. Krotko wyjaśnij, dlaczego niektóre stwierdzenia są nieprawdziwe. 4.4 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 1 Klasa
  3. Biologia

Oceń prawdziwość poniższych stwierdzeń. Krotko wyjaśnij, dlaczego niektóre stwierdzenia są nieprawdziwe.

1
 Zadanie

2
 Zadanie

1. FAŁSZ (Trapia genowa dotyczy jednego lub kilku wadiwych genów.)

2. FAŁSZ (Terapia genowa nie jest stosowana rutynowo, ponieważ wciąż jest na etapie badań.)

3. PRAWDA

4. PRAWDA

5. PRAWDA

 

DYSKUSJA
Informacje
Po prostu biologia. Zakres podstawowy
Autorzy: Karolina Archacka, Rafał Archacki, Krzysztof Spalik, Joanna Stocka
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Monika

6059

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Wzajemne położenie odcinków

Dwa odcinki mogą być względem siebie prostopadłe lub równoległe.

  1. Odcinki prostopadłe – odcinki zawarte w prostych prostopadłych – symboliczny zapis $$AB⊥CD$$.

    odcinkiprostopadle
     
  2. Odcinki równoległe – odcinki zawarte w prostych równoległych – symboliczny zapis $$AB∥CD$$.

    odicnkirownolegle
 
Dzielenie z resztą

Na początek zapoznajmy się z twierdzeniem o dzieleniu z resztą, które brzmi następująco:
"Dla pary liczb całkowitych a i b (gdzie b ≠ 0) istnieją liczby całkowite q i r, dla których spełnione jest równanie a = qb + r, gdzie 0 ≤ r < │b│. Liczby q i r nazywa się odpowiednio ilorazem i resztą z dzielenia a przez b."

Innymi słowy, dzielenie z resztą to takie dzielenie, w którym iloraz nie jest liczbą całkowitą.

Przykład obliczania reszty z dzielenia:

  1. Podzielmy liczbę 23 przez 3.
  2. Wynikiem dzielenia nie jest liczba całkowita (nie dzieli się równo). Maksymalna liczba trójek, które zmieszczą się w 23 to 7.
  3. $$7 • 3 = 21$$
  4. Różnica między liczbami 23 i 21 wynosi 2, zatem resztą z tego dzielenia jest liczba 2.
  5. Poprawny zapis działania: $$21÷3=7$$ $$r.2$$

Przykłady:

  • $$5÷2=2$$ r. 1
  • $$27÷9=3$$ r. 0
  • $$(-8)÷(-3)=3 r. 1$$
  • $$(-15)÷4=-3$$ .r -3 lub $$(-15)÷4=-4$$ r. 1

  Zapamiętaj

Reszta jest zawsze mniejsza od dzielnika.

Zobacz także
Udostępnij zadanie