Matematyka
 
Matematyka 2001 (Podręcznik)
 
Autorzy: Praca zbiorowa
Wydawnictwo: WSiP
Rok wydania: 2015
Podaj, ile wierzchołków, krawędzi i ścian ma graniastosłup. 4.29 gwiazdek na podstawie 7 opinii

Podaj, ile wierzchołków, krawędzi i ścian ma graniastosłup.

5 Zadanie
6 Zadanie
7 Zadanie
8 Zadanie
9 Zadanie
10 Zadanie

a) Graniastosłup trójkątny.

Wierzchołki: Graniastosłup ten ma trójkąty w podstawach. Każda podstawa ma 3 wierzchołki. Wszystkich wierzchołków jest więc 2∙3=6.

Krawędzie: Podstawą jest trójkąt. Podstawa ma zatem 3 krawędzie. Druga podstawa (też trójkąt) ma 3 krawędzie. 3 krawędzie łączą przeciwległe wierzchołki podstaw. Mamy w sumie 3∙3=9 krawędzi. 

Ściany: Jeżeli podstawą jest trójkąt, to mamy 3 ściany boczne i dwie podstawy, zatem ścian mamy: 3+2=5.

 

b) Graniastosłup pięciokątny.

Wierzchołki: Graniastosłup ten ma pięciokąty w podstawach. Każda podstawa ma 5 wierzchołków. Wszystkich wierzchołków jest więc 2∙5=10.

Krawędzie: Podstawą jest pięciokąt. Podstawa ma zatem 5 krawędzi. Druga podstawa (też pięciokąt) ma 5 krawędzi. 5 krawędzi łączy przeciwległe wierzchołki podstaw. Mamy w sumie 3∙5=15 krawędzi. 

Ściany: Jeżeli podstawą jest pięciokąt, to mamy 5 ścian bocznych i dwie podstawy, zatem ścian mamy: 5+2=7.

 

c) Graniastosłup dwudziestopięciokątny.

Wierzchołki: Graniastosłup ten ma dwudziestopięciokąty w podstawach. Każda podstawa ma 25 wierzchołków. Wszystkich wierzchołków jest więc 2∙25=50.

Krawędzie: Podstawą jest  dwudziestopięciokąt. Podstawa ma zatem 25 krawędzi. Druga podstawa (też dwudziestopięciokąt) ma 25 krawędzi. 25 krawędzi łączy przeciwległe wierzchołki podstaw. Mamy w sumie 3∙25=75 krawędzi. 

Ściany: Jeżeli podstawą jest dwudziestopięciokąt, to mamy 25 ścian bocznych i dwie podstawy, zatem ścian mamy: 25+2=27.