Matematyka
 
Brak innych książek z tego przedmiotu
 
Autorzy: Wojciech Babiański, Lech Chańko, Joanna Czarnowska, Grzegorz Janocha
Wydawnictwo: Nowa Era
Rok wydania: 2016
Rozłóż wielomian w na czynniki 4.75 gwiazdek na podstawie 8 opinii

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

   

 

 

 

 

 

  

 

 

`overline(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

 

 

 

`f)` 

`w(x)=-1/3x^5+8/3x^4+3x^3=-1/3x^3(x^2-8x-9)=**` 

 

`\ \ \ Delta=(-8)^2-4*1*(-9)=64+36=100` 

`\ \ \ sqrtDelta=10` 

`\ \ \ x_1=(8-10)/2=-2/2=-1` 

`\ \ \ x_2=(8+10)/2=18/2=9` 

 

`**=-1/3x^2(x+1)(x-9)` 

`overline(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

 

 

 

 

`g)` 

`w(x)=(x^2-3x+2)(x^2-2x-3)=**` 

 

`\ \ \ Delta_1=(-3)^2-4*1*2=9-8=1` 

`\ \ \ sqrt(Delta_1)=1` 

`\ \ \ x_1=(3-1)/2=2/2=1` 

`\ \ \ x_2=(3+1)/2=4/2=2` 

 

`\ \ \ Delta_2=(-2)^2-4*1*(-3)=4+12=16` 

`\ \ \ sqrt(Delta_2)=4` 

`\ \ \ x_3=(2-4)/2=-2/2=-1` 

`\ \ \ x_4=(2+4)/2=6/2=3` 

 

`**=(x-1)(x-2)(x+1)(x-3)` 

`overline(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

 

 

 

`h)` 

`w(x)=(x^2-3x-4)(x^2+5x+4)=**` 

 

`\ \ \ Delta_1=(-3)^2-4*1*(-4)=9+16=25` 

`\ \ \ sqrt(Delta_1)=5` 

`\ \ \ x_1=(3-5)/2=-2/2=-1` 

`\ \ \ x_2=(3+5)/2=8/2=4` 

 

`\ \ \ Delta_2=5^2-4*4=25-16=9` 

`\ \ \ sqrt(Delta_2)=3` 

`\ \ \ x_3=(-5-3)/2=-8/2=-4` 

`\ \ \ x_4=(-5+3)/2=-2/2=-1` 

 

`**=(x+1)(x-4)(x+4)(x+1)` 

`overline(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

 

 

 

`i)` 

`w(x)=(2x^2-5x-3)(2x^2-7x+3)=**` 

 

`\ \ \ Delta_1=(-5)^2-4*2*(-3)=25+24=49` 

`\ \ \ sqrt(Delta_1)=7` 

`\ \ \ x_1=(5-7)/(2*2)=-2/4=-1/2` 

`\ \ \ x_2=(5+7)/(2*2)=12/4=3` 

 

`\ \ \ Delta_2=(-7)^2-4*2*3=49-24=25` 

`\ \ \ sqrt(Delta_2)=5` 

`\ \ \ x_3=(7-5)/(2*2)=2/4=1/2` 

`\ \ \ x_4=(7+5)/(2*2)=12/4=3` 

 

`**=2(x+1/2)(x-3)*2(x-1/2)(x-3)=4(x-1/2)(x+1/2)(x-3)^2` 

`overline(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

 

 

 

`j)` 

`w(x)=(x^3+x^2-2x)(x^3+2x^2-15x)=x(x^2+x-2)*x(x^2+2x-15)=` 

`\ \ \ \ \ \ \ =x^2(x^2+x-2)(x^2+2x-15)=**`     

 

`\ \ \ Delta_1=1^2-4*1*(-2)=1+8=9` 

`\ \ \ sqrt(Delta_1)=3` 

`\ \ \ x_1=(-1-3)/2=-4/2=-2` 

`\ \ \ x_2=(-1+3)/2=2/2=1` 

 

`\ \ \ Delta_2=2^2-4*1*(-15)=4+60=64` 

`\ \ \ sqrt(Delta_2)=8` 

`\ \ \ x_3=(-2-8)/2=-10/2=-5` 

`\ \ \ x_4=(-2+8)/2=6/2=3` 

 

`**=x^2(x+2)(x-1)(x+5)(x-3)` 

`overline(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

 

 

 

`k)` 

`w(x)=(x^4+x^3-6x^2)(x^5+2x^4+3x^3)=x^2(x^2+x-6)*x^3(x^2+2x+3)=` 

`\ \ \ \ \ \ \ =x^5(x^2+x-6)(x^2+2x+3)=**` 

 

`\ \ \ Delta_1=1^2-4*1*(-6)=1+24=25` 

` \ \ \ sqrt(Delta_1)=5` 

`\ \ \ x_1=(-1-5)/2=-6/2=-3` 

`\ \ \ x_2=(-1+5)/2=4/2=2` 

 

`\ \ \ Delta_2=2^2-4*1*3=4-12<0\ \ \ =>\ \ \ "brak czynników liniowych"` 

 

`**=x^5(x+3)(x-2)(x^2+2x+3)` 

`overline(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

 

`l)` 

`w(x)=(x^3-3x^2+2x)(x^2+4x+1)=x(x^2-3x+2)(x^2+4x+1)=**` 

 

`\ \ \ Delta_1=(-3)^2-4*1*2=9-8=1` 

` \ \ \ sqrt(Delta_1)=1` 

`\ \ \ x_1=(3-1)/2=2/2=1` 

`\ \ \ x_2=(3+1)/2=4/2=2`  

 

`\ \ \ Delta_2=4^2-4*1*1=16-4=12`   

`\ \ \ sqrt(Delta_2)=sqrt12=sqrt4*sqrt3=2sqrt3` 

`\ \ \ x_3=(-4-2sqrt3)/2=-2-sqrt3` 

` \ \ \ x_4=(-4+2sqrt3)/2=-2+sqrt3` 

 

`**=x(x-1)(x-2)(x+2+sqrt3)(x+2-sqrt3)`